SHEN Jia-cheng,ZHANG Xiao-li,HUANG Jian-li,et al.Genome Wide Association Analysis on Water-Soluble Protein in Soybean[J].Soybean Science,2020,39(04):509-517.[doi:10.11861/j.issn.1000-9841.2020.04.0509]
大豆水溶性蛋白质的全基因组关联分析
- Title:
- Genome Wide Association Analysis on Water-Soluble Protein in Soybean
- Keywords:
- Soybean [Glycine max (L.) Merr.]; Water-soluble protein; Genome-wide association analysis; Mining for candidate gene
- 文献标志码:
- A
- 摘要:
- 为进一步解析中国大豆种质水溶性蛋白的遗传基础,为大豆高水溶性蛋白质的分子标记辅助选择育种及品质改良提供理论依据,本研究以224份大豆种质为试验材料,于2017和2018年对大豆水溶性蛋白质含量进行测定,利用1 514个高质量的SNP标记分别对2017、2018年水溶性蛋白质含量及两年均值进行全基因组关联分析,共检测到18个显著关联的SNP标记,这些SNP标记涉及16个位点,有8个位点至少被检测到2次,其余8个位点仅被检测到1次,表明其受环境因素影响较大。16个位点中有7个尚未见报道,分别位于8、11、13、14和15号染色体上,是新发现的控制大豆水溶性蛋白的位点。对表型变异解释率较高且稳定关联的2个位点qWSPC7和qWSPC8-1候选区间内的基因进行预测,共获得25个候选基因,其中有7个基因(Glyma.07g195000、Glyma.08g103100、Glyma.08g108900、Glyma.08g105100、Glyma.08g107800、Glyma.08g107700和Glyma.08G115800)在大豆籽粒、根或根瘤中具有较高的表达水平。这些基因可作为水溶性蛋白质的候选基因,可能具有调控大豆水溶性蛋白质的功能。
- Abstract:
- In order to further analyze the genetic basis of water-soluble protein in Chinese soybean collection, this study investigated the water-soluble protein content phenotype of 224 soybean collection of 2017 and 2018 years. Genome-wide association study (GWAS) of WSPC was performed in 2017, 2018 and the average across of the two years with 1 514 high-quality SNP markers.A total of 18 significantly associated SNPs were detected. These SNPs involved 16 sites, with 8 sites were stably detected in at least two times, and the remaining 8 loci were detected only in a single environment, indicating that it was greatly affected by environmental factors.Seven of the 16 loci have not been reported, located on chromosomes 8, 11, 13, 14, and 15 respectively. They are newly discovered loci that control the water-soluble protein of soybean. Prediction of genes in the two candidate regions of qWSPC7 and qWSPC8-1 with high phenotypic variation interpretation rates and stable associations obtained a total of 25 candidate genes, of which 7 genes (Glyma.07g195000, Glyma.08g103100, Glyma.08g108900, Glyma.08g105100, Glyma.08g107800, Glyma.08g107700 and Glyma.08G115800) had higher expression levels in soybean seed, roots or nodules. These genes can be used as candidate genes for water-soluble proteins and may have the function of regulating soybean water-soluble proteins. This study provides theoretical basis for molecular marker-assisted selection breeding and quality improvement of soybean high water-soluble proteins.
参考文献/References:
[1]Singh P, Kumar R, Sabapathy S N, et al. Functional and edible uses of soy protein products[J]. Comprehensive Reviews in Food Science and Food Safety, 2008, 7(1): 14-28.[2]Yu X, Yuan F, Fu X, et al. Profiling and relationship of water-soluble sugar and protein compositions in soybean seeds[J].Food Chemistry, 2015, 196:776-782.[3]Zhang D,Kan G, Hu Z, et al. Use of single nucleotide polymorphisms and haplotypes to identify genomic regions associated with protein content and water-soluble protein content in soybean[J]. Theoretical and Applied Genetics,2014, 127(9):1905-1915.[4]Lu W, Wen Z, Li H, et al. Identification of the quantitative trait loci (QTL) underlying water-soluble protein content in soybean[J].Theoretical and Applied Genetics, 2013, 126(2):425-433.[5]陈强,雷雅坤, 闫龙, 等.利用双尾法定位大豆水溶性蛋白QTL[J]. 华北农学报, 2014, 29(4):80-86. (Cheng Q,Lei Y K, Yan L,et al. QTL mapping of soluble protein content by two tail analysis[J]. Acta Agriculturae Boreali-Sinica,2014, 29(4):80-86.)[6]Rafalski J A. Association genetics in crop improvement[J]. Current Opinion in Plant Biology, 2010, 13(2):174-180.[7]Zhu C, Gore M, Buckler E S, et al. Status and prospects of association mapping in plants[J]. Plant Genome, 2008, 1(1):5-20.[8]Yu J, Buckler E S. Genetic association mapping and genome organization of maize[J]. Current Opinion in Biotechnology, 2006, 17(2):155-160.[9]Li H, Peng Z, Yang X, et al. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels[J]. Nature Genetics, 2013, 45(1): 43.[10]Wen W, Li D, Li X, et al. Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights[J]. Nature Communications, 2014, 5: 3438.[11]Dong H, Zhao H, Xie W, et al. A novel tiller angle gene, TAC3, together with TAC1 and D2 largely determine the natural variation of tiller angle in rice cultivars[J]. PLoS Genetics, 2016, 12(11): e1006412.[12]Huang X, Kurata N, Wang Z X, et al. A map of rice genome variation reveals the origin of cultivated rice[J]. Nature, 2012, 490(7421): 497.[13]Fang C, Ma Y, Wu S, et al. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean[J]. Genome Biology, 2017, 18(1): 161.[14]Zhang J, Song Q, Cregan P B, et al. Genome-wide association study, genomic prediction and marker-assisted selection for seed weight in soybean (Glycine max)[J]. Theoretical and Applied Genetics, 2016, 129(1): 117-130.[15]Schmutz J, Cannon S B, Schlueter J, et al. Genome sequence of the palaeopolyploid soybean[J]. Nature, 2010, 463(7278): 178.[16]Zhang D, Lyu H, Chu S, et al. The genetic architecture of water-soluble protein content and its genetic relationship to total protein content in soybean[J]. Scientific Reports, 2017, 7(1): 5053.[17]Jiang P, Zhang P P, Zhang X, et al. Genetic diversity and association analysis for solvent retention capacity in the accessions derived from soft wheat Ningmai 9[J]. International Journal of Genomics, 2017(9):2413150.[18]邱丽娟, 李英慧, 关荣霞,等.大豆核心种质和微核心种质的构建、验证与研究进展[J].作物学报,2009, 35(4): 571-579.(Qiu L J, Li Y H, Guan R X, et al. Establishment, representative testing and research progress of soybean core collection and mini core collection[J]. Acta Agronomica Sinica, 2009, 35(4): 571-579.)[19]Jing H, Na G, Li Y, et al. Phenotypic evaluation and genetic dissection of resistance to Phytophthora sojae in the Chinese soybean mini core collection[J]. BMC Genetics, 2016, 17(1):85.[20]Zhang X, Zhao J, Bu Y, et al. Genome-wide association studies of soybean seed hardness in the Chinese mini core collection[J]. Plant Molecular Biology Reporter, 2018, 36(4): 605-617.[21]Li Y, Reif J C, Ma Y, et al. Targeted association mapping demonstrating the complex molecular genetics of fatty acid formation in soybean[J]. BMC Genomics, 2015, 16(1): 841.[22]Jiang P, Zhang P P, Zhang X, et al. Genetic diversity and association analysis for solvent retention capacity in the accessions derived from soft wheat Ningmai 9 [J]. International Journal of Genomics, 2017(9): 2413150.[23]Li D, Sun M, Han Y, et al. Identification of QTL underlying soluble pigment content in soybean stems related to resistance to soybean white mold (Sclerotinia sclerotiorum)[J]. Euphytica, 2010, 172(1):49-57.[24]Malhotra A, Coupland J N. The effect of surfactants on the solubility, zeta potential, and viscosity of soy protein isolates[J]. Food Hydrocoll, 2004,18(1):101-108.[25]Ortiz S E M, Wagner J R. Hydrolysates of native and modified soy protein isolates: Structural characteristics, solubility and foaming properties[J]. Food Research International, 2002, 35(6): 511-518.[26]Walsh D J, Cleary D, McCarthy E, et al. Modification of the nitrogen solubility properties of soy protein isolate following proteolysis and transglutaminase cross-linking[J]. Food Research International, 2003, 36(7): 677-683.[27]Jun T H, Van K, Kim M Y, et al. Association analysis using SSR markers to find QTL for seed protein content in soybean[J]. Euphytica, 2008, 162(2): 179-191.[28]Pathan S M, Vuong T, Clark K, et al. Genetic mapping and confirmation of quantitative trait loci for seed protein and oil contents and seed weight in soybean[J]. Crop Science, 2013, 53(3):765-774.〖HJ1.8mm〗[29]Tajuddin T, Watanabe S, Yamanaka N, et al. Analysis of quantitative trait loci for protein and lipid contents in soybean seeds using recombinant inbred lines[J]. Breeding Science, 2003, 53(2): 133-140.[30]Mao T, Jiang Z, Han Y, et al. Identification of quantitative trait loci underlying seed protein and oil contents of soybean across multi-genetic backgrounds and environments[J]. Plant Breeding, 2013, 132(6): 630-641.[31]Qi Z, Hou M, Han X, et al. Identification of quantitative trait loci (QTLs) for seed protein concentration in soybean and analysis for additive effects and epistatic effects of QTLs under multiple environments[J]. Plant Breeding, 2014, 133(4): 499-507.[32]Jun T H, Van K, Kim M Y, et al. Association analysis using SSR markers to find QTL for seed protein content in soybean[J].Euphytica, 2008, 162(2): 179-191.[33]Panthee D R, Kwanyuen P, Sams C E, et al. Quantitative trait loci for β-conglycinin (7S) and glycinin (11S) fractions of soybean storage protein[J]. Journal of the American Oil Chemists′ Society, 2004, 81(11): 1005-1012.[34]Reinprecht Y, Poysa V W, Yu K, et al. Seed and agronomic QTL in low linolenic acid, lipoxygenase-free soybean (Glycine max (L.) Merrill) germplasm[J]. Genome, 2006, 49(12): 1510-1527.[35]Wang X, Jiang G L, Song Q, et al. Quantitative trait locus analysis of seed sulfur-containing amino acids in two recombinant inbred line populations of soybean[J]. Euphytica, 2015, 201(2): 293-305.[36]Nichols D M, Glover K D, Carlson S R, et al. Fine mapping of a seed protein QTL on soybean linkage group I and its correlated effects on agronomic traits[J]. Crop Science, 2006, 46(2): 834-839.[37]Diers B W, Keim P, Fehr W R, et al. RFLP analysis of soybean seed protein and oil content[J]. Theoretical and Applied Genetics, 1992, 83(5): 608-612.[38]Cheng L, Yuan H Y, Ren R, et al. Genome-wide identification, classification, and expression analysis of amino acid transporter gene family in Glycine max[J]. Frontiers in Plant Science, 2016, 7: 515.[39]Sale P W G, Campbell L C. Changes in physical characteristics and composition of soybean seed during crop development[J]. Field Crops Research, 1980, 3: 147-155.[40]Hill J E, Breidenbach R W. Proteins of soybean seeds: II. Accumulation of the major protein components during seed development and maturation[J].Plant Physiology, 1974,53(5): 747-751.[41]Matheny T A, Hunt P G. Effects of irrigation on accumulation of soil and symbiotically fixed n by soybean grown on a Norfolk Loamy sand[J]. Agronomy Journal, 1983, 75(5): 719-722.[42]Vollmann J, Fritz C N, Wagentristl H, et al. Environmental and genetic variation of soybean seed protein content under Central European growing conditions[J].Journal of the Science of Food and Agriculture, 2000, 80(9): 1300-1306.[43]Tamagno S, Adee E A, Ciampitti I A. Effects of nitrogen in soybean seed quality definition during seed-filling period[J]. Kansas Agricultural Experiment Station Research Reports, 2018, 4(7): 8.
相似文献/References:
[1]胡壮壮,师毅,李拥虎,等.不同聚集信息素诱芯及诱捕器对大豆田间点蜂缘蝽诱捕效果研究[J].大豆科学,2020,39(02):288.[doi:10.11861/j.issn.1000-9841.2020.02.0288]
HU Zhuang-zhuang,SHI Yi,LI Yong-hu,et al.Study on the Trapping Effect of Different Aggregation Pheromone Lure Cores and Trap Devices Against Riptortus pedestris in Soybean Field[J].Soybean Science,2020,39(04):288.[doi:10.11861/j.issn.1000-9841.2020.02.0288]
备注/Memo