[1]沈甲诚,张小利,黄建丽,等.大豆水溶性蛋白质的全基因组关联分析[J].大豆科学,2020,39(04):509-517.[doi:10.11861/j.issn.1000-9841.2020.04.0509]
 SHEN Jia-cheng,ZHANG Xiao-li,HUANG Jian-li,et al.Genome Wide Association Analysis on Water-Soluble Protein in Soybean[J].Soybean Science,2020,39(04):509-517.[doi:10.11861/j.issn.1000-9841.2020.04.0509]
点击复制

大豆水溶性蛋白质的全基因组关联分析

参考文献/References:

[1]Singh P, Kumar R, Sabapathy S N, et al. Functional and edible uses of soy protein products[J]. Comprehensive Reviews in Food Science and Food Safety, 2008, 7(1): 14-28.[2]Yu X, Yuan F, Fu X, et al. Profiling and relationship of water-soluble sugar and protein compositions in soybean seeds[J].Food Chemistry, 2015, 196:776-782.[3]Zhang D,Kan G, Hu Z, et al. Use of single nucleotide polymorphisms and haplotypes to identify genomic regions associated with protein content and water-soluble protein content in soybean[J]. Theoretical and Applied Genetics,2014, 127(9):1905-1915.[4]Lu W, Wen Z, Li H, et al. Identification of the quantitative trait loci (QTL) underlying water-soluble protein content in soybean[J].Theoretical and Applied Genetics, 2013, 126(2):425-433.[5]陈强,雷雅坤, 闫龙, 等.利用双尾法定位大豆水溶性蛋白QTL[J]. 华北农学报, 2014, 29(4):80-86. (Cheng Q,Lei Y K, Yan L,et al. QTL mapping of soluble protein content by two tail analysis[J]. Acta Agriculturae Boreali-Sinica,2014, 29(4):80-86.)[6]Rafalski J A. Association genetics in crop improvement[J]. Current Opinion in Plant Biology, 2010, 13(2):174-180.[7]Zhu C, Gore M, Buckler E S, et al. Status and prospects of association mapping in plants[J]. Plant Genome, 2008, 1(1):5-20.[8]Yu J, Buckler E S. Genetic association mapping and genome organization of maize[J]. Current Opinion in Biotechnology, 2006, 17(2):155-160.[9]Li H, Peng Z, Yang X, et al. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels[J]. Nature Genetics, 2013, 45(1): 43.[10]Wen W, Li D, Li X, et al. Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights[J]. Nature Communications, 2014, 5: 3438.[11]Dong H, Zhao H, Xie W, et al. A novel tiller angle gene, TAC3, together with TAC1 and D2 largely determine the natural variation of tiller angle in rice cultivars[J]. PLoS Genetics, 2016, 12(11): e1006412.[12]Huang X, Kurata N, Wang Z X, et al. A map of rice genome variation reveals the origin of cultivated rice[J]. Nature, 2012, 490(7421): 497.[13]Fang C, Ma Y, Wu S, et al. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean[J]. Genome Biology, 2017, 18(1): 161.[14]Zhang J, Song Q, Cregan P B, et al. Genome-wide association study, genomic prediction and marker-assisted selection for seed weight in soybean (Glycine max)[J]. Theoretical and Applied Genetics, 2016, 129(1): 117-130.[15]Schmutz J, Cannon S B, Schlueter J, et al. Genome sequence of the palaeopolyploid soybean[J]. Nature, 2010, 463(7278): 178.[16]Zhang D, Lyu H, Chu S, et al. The genetic architecture of water-soluble protein content and its genetic relationship to total protein content in soybean[J]. Scientific Reports, 2017, 7(1): 5053.[17]Jiang P, Zhang P P, Zhang X, et al. Genetic diversity and association analysis for solvent retention capacity in the accessions derived from soft wheat Ningmai 9[J]. International Journal of Genomics, 2017(9):2413150.[18]邱丽娟, 李英慧, 关荣霞,等.大豆核心种质和微核心种质的构建、验证与研究进展[J].作物学报,2009, 35(4): 571-579.(Qiu L J, Li Y H, Guan R X, et al. Establishment, representative testing and research progress of soybean core collection and mini core collection[J]. Acta Agronomica Sinica, 2009, 35(4): 571-579.)[19]Jing H, Na G, Li Y, et al. Phenotypic evaluation and genetic dissection of resistance to Phytophthora sojae in the Chinese soybean mini core collection[J]. BMC Genetics, 2016, 17(1):85.[20]Zhang X, Zhao J, Bu Y, et al. Genome-wide association studies of soybean seed hardness in the Chinese mini core collection[J]. Plant Molecular Biology Reporter, 2018, 36(4): 605-617.[21]Li Y, Reif J C, Ma Y, et al. Targeted association mapping demonstrating the complex molecular genetics of fatty acid formation in soybean[J]. BMC Genomics, 2015, 16(1): 841.[22]Jiang P, Zhang P P, Zhang X, et al. Genetic diversity and association analysis for solvent retention capacity in the accessions derived from soft wheat Ningmai 9 [J]. International Journal of Genomics, 2017(9): 2413150.[23]Li D, Sun M, Han Y, et al. Identification of QTL underlying soluble pigment content in soybean stems related to resistance to soybean white mold (Sclerotinia sclerotiorum)[J]. Euphytica, 2010, 172(1):49-57.[24]Malhotra A, Coupland J N. The effect of surfactants on the solubility, zeta potential, and viscosity of soy protein isolates[J]. Food Hydrocoll, 2004,18(1):101-108.[25]Ortiz S E M, Wagner J R. Hydrolysates of native and modified soy protein isolates: Structural characteristics, solubility and foaming properties[J]. Food Research International, 2002, 35(6): 511-518.[26]Walsh D J, Cleary D, McCarthy E, et al. Modification of the nitrogen solubility properties of soy protein isolate following proteolysis and transglutaminase cross-linking[J]. Food Research International, 2003, 36(7): 677-683.[27]Jun T H, Van K, Kim M Y, et al. Association analysis using SSR markers to find QTL for seed protein content in soybean[J]. Euphytica, 2008, 162(2): 179-191.[28]Pathan S M, Vuong T, Clark K, et al. Genetic mapping and confirmation of quantitative trait loci for seed protein and oil contents and seed weight in soybean[J]. Crop Science, 2013, 53(3):765-774.〖HJ1.8mm〗[29]Tajuddin T, Watanabe S, Yamanaka N, et al. Analysis of quantitative trait loci for protein and lipid contents in soybean seeds using recombinant inbred lines[J]. Breeding Science, 2003, 53(2): 133-140.[30]Mao T, Jiang Z, Han Y, et al. Identification of quantitative trait loci underlying seed protein and oil contents of soybean across multi-genetic backgrounds and environments[J]. Plant Breeding, 2013, 132(6): 630-641.[31]Qi Z, Hou M, Han X, et al. Identification of quantitative trait loci (QTLs) for seed protein concentration in soybean and analysis for additive effects and epistatic effects of QTLs under multiple environments[J]. Plant Breeding, 2014, 133(4): 499-507.[32]Jun T H, Van K, Kim M Y, et al. Association analysis using SSR markers to find QTL for seed protein content in soybean[J].Euphytica, 2008, 162(2): 179-191.[33]Panthee D R, Kwanyuen P, Sams C E, et al. Quantitative trait loci for β-conglycinin (7S) and glycinin (11S) fractions of soybean storage protein[J]. Journal of the American Oil Chemists′ Society, 2004, 81(11): 1005-1012.[34]Reinprecht Y, Poysa V W, Yu K, et al. Seed and agronomic QTL in low linolenic acid, lipoxygenase-free soybean (Glycine max (L.) Merrill) germplasm[J]. Genome, 2006, 49(12): 1510-1527.[35]Wang X, Jiang G L, Song Q, et al. Quantitative trait locus analysis of seed sulfur-containing amino acids in two recombinant inbred line populations of soybean[J]. Euphytica, 2015, 201(2): 293-305.[36]Nichols D M, Glover K D, Carlson S R, et al. Fine mapping of a seed protein QTL on soybean linkage group I and its correlated effects on agronomic traits[J]. Crop Science, 2006, 46(2): 834-839.[37]Diers B W, Keim P, Fehr W R, et al. RFLP analysis of soybean seed protein and oil content[J]. Theoretical and Applied Genetics, 1992, 83(5): 608-612.[38]Cheng L, Yuan H Y, Ren R, et al. Genome-wide identification, classification, and expression analysis of amino acid transporter gene family in Glycine max[J]. Frontiers in Plant Science, 2016, 7: 515.[39]Sale P W G, Campbell L C. Changes in physical characteristics and composition of soybean seed during crop development[J]. Field Crops Research, 1980, 3: 147-155.[40]Hill J E, Breidenbach R W. Proteins of soybean seeds: II. Accumulation of the major protein components during seed development and maturation[J].Plant Physiology, 1974,53(5): 747-751.[41]Matheny T A, Hunt P G. Effects of irrigation on accumulation of soil and symbiotically fixed n by soybean grown on a Norfolk Loamy sand[J]. Agronomy Journal, 1983, 75(5): 719-722.[42]Vollmann J, Fritz C N, Wagentristl H, et al. Environmental and genetic variation of soybean seed protein content under Central European growing conditions[J].Journal of the Science of Food and Agriculture, 2000, 80(9): 1300-1306.[43]Tamagno S, Adee E A, Ciampitti I A. Effects of nitrogen in soybean seed quality definition during seed-filling period[J]. Kansas Agricultural Experiment Station Research Reports, 2018, 4(7): 8.

相似文献/References:

[1]胡壮壮,师毅,李拥虎,等.不同聚集信息素诱芯及诱捕器对大豆田间点蜂缘蝽诱捕效果研究[J].大豆科学,2020,39(02):288.[doi:10.11861/j.issn.1000-9841.2020.02.0288]
 HU Zhuang-zhuang,SHI Yi,LI Yong-hu,et al.Study on the Trapping Effect of Different Aggregation Pheromone Lure Cores and Trap Devices Against Riptortus pedestris in Soybean Field[J].Soybean Science,2020,39(04):288.[doi:10.11861/j.issn.1000-9841.2020.02.0288]

备注/Memo

收稿日期:2019-11-27
基金项目:国家重点研发计划(2018YFD0100800, 2017YFD0101500);中央高校基本科研业务费专项资金(KYT201801);现代农业产业技术体系建设专项(CARS-004-PS10);江苏省重点研发计划(BE2019376-2);长江学者和创新团队发展计划(PCSIRT_17R55);仲英作物种业创新中心;江苏省现代作物生产协同创新中心。
第一作者简介:沈甲诚(1993-),男,硕士,主要从事大豆遗传育种研究。E-mail:2017101159@njau.edu.cn。
通讯作者:赵晋铭(1978-),男,博士,副教授,主要从事大豆遗传育种研究。E-mail:jmz3000@126.com;
邢邯(1963-),男,博士,教授,主要从事大豆育种与大豆分子遗传研究。E-mail:hanx@njau.edu.cn。

更新日期/Last Update: 2020-09-02