HU Yu-qi,LIU Jin-yue,SHENG Ze-wen,et al.Weediness Risk Assessment of Genetically Modified Soybeans MON 87701RR2Y and MON 87701[J].Soybean Science,2020,39(03):390-400.[doi:10.11861/j.issn.1000-9841.2020.03.0390]
转基因大豆MON 87701RR2Y和MON 87701杂草化的风险评估
- Title:
- Weediness Risk Assessment of Genetically Modified Soybeans MON 87701RR2Y and MON 87701
- Keywords:
- Genetically modified soybeans; Weediness; Safety assessment
- 文献标志码:
- A
- 摘要:
- 为评价转基因大豆MON 87701RR2Y和MON 87701的自身杂草化生态风险,在农田生态环境下研究2种转基因大豆、受体大豆和当地常规大豆的生存竞争力(出苗率、相对盖度、株高、叶龄)、繁育能力(生育期、产量)、自生苗、种子延续能力和落粒性以及对大豆田常用除草剂的耐性。结果表明:在适宜季节2种转基因大豆的生存竞争能力和繁育能力与受体大豆相当,且显著低于当地常规大豆,表现为植株较矮、复叶数少、产量低;在非适宜季节4种大豆竞争能力相似,4种大豆均没有形成自生苗,落粒性不强且种子的延续能力都很弱,4种大豆对乙草胺、精喹禾灵和乳氟禾草灵的耐性相当。研究结果表明在南京农田生态环境下,2种转基因大豆的生存竞争能力与受体大豆相似,低于当地常规大豆或与其相似,自身杂草化风险较小。
- Abstract:
- In order to assess the potential ecological risk for weediness of genetically modified (GM) soybeans MON 87701RR2Y and MON 87701, the GM soybeans, their recipient soybean and local conventional soybean variety were planted in the field of Nanjing. The surviving competition ability (including germination rate, relative coverage, plant height, leaf stage), reproducing ability (growth period, yield), volunteer possibility, seed shattering possibility, seed persisting possibility and conventional herbicide tolerance were comparatively evaluated. The results showed that the surviving competition ability and reproducing ability of the two GM soybeans were similar with their recipient soybean, and were less than the local conventional soybean in appropriate season. The surviving competition ability was similar among the four varieties in unfavorable season. No volunteer plant was observed in experimental period, and the seed shattering and persisting ability of the four experimental soybean varieties were weak. The tolerance of the two GM soybeans to acetochlor, quizalofop-p-ethyl and lactofen were similar with their recipient soybean and the conventional soybean. The results indicated that the two GM soybeans demonstrated the similar surviving competition ability to their recipient soybean, and similar or less compared with the local conventional soybean. Therefore, the two GM soybeans had the lowest potential of weediness.
参考文献/References:
[1]国际农业生物技术应用服务组织.2018年全球生物技术/转基因作物商业化发展态势[J].中国生物工程杂志, 2019, 39(8): 1-6. (International Service for the Acquisition of Agri-biotech Applications.Global status of commercialized biotech/GM crops in 2018[J]. China Biotechnology, 2019, 39(8): 1-6.)[2]王雪琴, 王锐. 中国大豆进口依存度影响因素实证研究[J]. 粮食科技与经济, 2017, 42(3): 24-28. (Wang X Q, Wang R. Empirical study on the factors affecting China′s soybean import dependence[J]. Grain Science and Technology and Economy, 2017, 42(3): 24-28.)[3]中华人民共和国农业部.农业转基因生物安全管理条例[EB/OL]. (2017-12-22) [2019-12-15]. http://www.moa.gov.cn/ztzl/zjyqwgz/xggzjg/201007/t20100717_1601306.htm.(Ministry of Agriculture of the People′s Republic of China.Regulations on the safety management of agricultural gmos [EB/OL]. (2017-12-22) [2019-12-15]. http://www.moa.gov.cn/ztzl/zjyqwgz/xggzjg/201007/t20100717_1601306.htm.)[4]中华人民共和国农业部.农业转基因生物安全评价管理办法[EB/OL]. (2017-12-22) [2019-12-15]. http://www.moa.gov.cn/ztzl/zjyqwgz/zcfg/201712/t20171227_6129154.htm. (Ministry of Agriculture of the People′s Republic of China.Measures for the safety evaluation and management of agricultural gmos [EB/OL]. (2017-12-22) [2019-12-15]. http://www.moa.gov.cn/ztzl/zjyqwgz/zcfg/201712/t20171227_6129154.htm.)[5]中华人民共和国农业部.农业转基因生物进口安全管理办法[EB/OL]. (2017-12-22) [2019-12-15]. http://www.moa.gov.cn/ztzl/zjyqwgz/zcfg/201007/t20100717_1601304.htm. (Ministry of Agriculture of the People′s Republic of China.Measures for the safety administration of the import of agricultural genetically modified organisms [EB/OL]. (2017-12-22) [2019-12-15]. http://www.moa.gov.cn/ztzl/zjyqwgz/zcfg/201007/t20100717_1601304.htm.)[6]中华人民共和国农业部.转基因大豆环境安全检测技术规范 第1部分: 生存竞争能力检测:NY/T 719.1-2003 [S].北京:中国标准出版社,2003 (Ministry of Agriculture of the People′s Republic of China.Technical specifications for environmental safety testing of genetically modified soybeans part 1: Survival and competitiveness testing: NY/T 719.1-2003[S].Beijing: China Standards Press,2003.)[7]中华人民共和国农业部.转基因植物及其产品环境安全检测耐除草剂大豆 第2部分: 生存竞争能力:农业部2031号公告-2-2013[S]. 北京:中国标准出版社,2013 (Ministry of Agriculture of the People′s Republic of China.Environmental safety testing of genetically modified plants and their products herbicide tolerant soybeans part 2: Survival and competitiveness: Announcement No. 2031 of the Ministry of Agriculture-2-2013[S]. Beijing: China Standards Press,2013.)[8]强胜. 杂草学[M]. 北京: 中国农业出版社, 2010: 10-35. (Qiang S. Weed science[M]. Beijing: China Agriculture Press, 2010: 10-35.)[9]Aono M, Wakiyama S, Nagatsu M, et al. Detection of feral transgenic oilseed rape with multiple-herbicide resistance in Japan[J]. Environmental Biosafety Research, 2006, 5(2): 77-87.[10]Hall L,Topinka K, Huffman J, et al. Pollen flow between herbicide-resistant Brassica napus is the cause of multiple-resistant B. napus volunteers[J]. Weed Science, 2000, 48(6): 688-694.[11]Knispel A L, McLachlan S M, Van Acker R C, et al. Gene flow and multiple herbicide resistance in escaped canola populations[J]. Weed Science, 2008, 56(1): 72-80.[12]Kotchoni S O, Gachomo E, Mwangi M. Commercial production of genetically modified crops: A prognosis towards global acceptance[J]. International Journal of Agriculture and Biology, 2005, 7(4): 681-688.[13]Qiu C X, Sangha J S , Song F S, et al. Production of marker-free transgenic rice expressing tissue-specific Bt gene[J]. Plant Cell Reports, 2010, 29(10):1097-1107.[14]Cellini F,Chesson A, Colquhoun I, et al. Unintended effects and their detection in genetically modified crops[J]. Food and Chemical Toxicology, 2004, 42(7): 1089-1125.[15]宋小玲, 强胜, 彭于发. 抗草甘膦转基因大豆(Glycine mac (L.) Merri)杂草性评价的试验实例[J]. 中国农业科学, 2009, 42(1): 145-153. (Song X L, Qiang S, Peng Y F. An experimental case of safety assessment of weediness of transgenic glyphosate-resistant soybean (Glycine mac (L.) Merri)[J]. Scientia Agricultura Sinica, 2009, 42(1): 145-153.)[16]周军英, 王长永, 续卫利. 温度、水分和盐度对转基因耐草甘膦大豆种子萌发和幼苗生长的影响[J]. 生态与农村环境学报, 2006(2): 26-30. (Zhou J Y, Wang C Y, Xu W L. Effects of temperature, moisture and salinity on seed germination and seedling growth of transgenic glyphosate-resistant soybean[J]. Journal of Ecology and Rural Environment, 2006(2): 26-30.)[17]黄鹞, 郭汝清, 刘标. 杂草环境下转EPSPS基因大豆NZL06-698的生态适应性研究[J]. 大豆科学, 2017, 36(6): 866-871. (Huang Y, Guo R Q, Liu B. Ecological adaptability of glyphosate-resistant transgenic soybean NZL06-698 in weed environment[J]. Soybean Science, 2017, 36(6): 866-871.)[18]李昊阳, 刘义, 李娜, 等.转基因抗草甘膦大豆的荒地生存竞争能力[J]. 杂草学报, 2018, 36(3): 13-18. (Li H Y, Liu Y, Li N, et al. Survival and competitiveness of transgenic glyphosate-resistant soybean in wasteland[J]. Journal of Weed Science, 2018, 36(3): 13-18.)[19]张家进, 武湘豫, 曹越平. 抗草甘膦转基因大豆的抗性及栽培地生存竞争能力研究[J]. 上海交通大学学报(农业科学版), 2017, 35(4): 26-30. (Zhang J J, Wu X Y, Cao Y P. Study on herbicide-resistance and survival competitiveness in cultivated land of transgenic glyphosate-resistant soybean[J]. Journal of Shanghai Jiaotong University (Agricultural Science), 2017, 35(4): 26-30.)[20]刘琦, 夏善勇, 刘昭军, 等. 耐盐碱转基因大豆(SRTS)生存竞争能力评价[J]. 大豆科学, 2017, 36(3): 371-376. (Liu Q, Xia S Y, Liu Z J, et al. Assessment of competitive ability for a salinization resistence transgenic soybeans line[J]. Soybean Science, 2017, 36(3): 371-376.)[21]康岭生, 杨向东, 王玉民, 等. 高油酸转基因大豆HOA80生存竞争能力检测[J]. 吉林农业科学, 2010, 35(6): 1-3, 24. (Kang L S, Yang X D, Wang Y M, et al. Assessment of competitive ability for a high oleic acid GM soybean line ‘HOA80’[J]. Journal of Jilin Agricultural Sciences, 2010, 35(6): 1-3, 24.)[22]转基因玉米“双抗12-6”草甘膦耐受性、生存竞争力及其对杂草多样性影响的研究[D]. 浙江: 浙江大学, 2016: 22-40. (Zhao S L. Study on the glyphosate-resistance and living competitiveness of transgenic maize “Shuangkang 12-6” and its effect on weeds variety[D]. Zhejiang: Zhejiang University, 2016: 22-40.)[23]刘文娟, 刘勇, 周西全, 等. 竞争生长环境对抗草甘膦转基因大豆生长和产量构成的影响[J]. 大豆科学, 2012, 31(1): 64-68. (Liu W J, Liu Y, Zhou X Q, et al. Impact of competitive environment on growth and yield component of glyphosate-tolerant soybean[J]. Soybean Science, 2012, 31(1): 64-68.)[24]Laughlin K D, Power A G, Snow A A, et al. Risk assessment of genetically engineered crops: Fitness effects of virus-resistance transgenes in wild Cucurbita pepo[J]. Ecological Applications, 2009, 19(5): 1091-1101.[25]Zeller S L,Kalinina O, Brunner S, et al. Transgene × environment interactions in genetically modified wheat[J]. PLoS One, 2010, 5(7): e11405.[26]林晓雅, 刘宝辉, 孔凡江. 大豆适应性的分子遗传基础[J]. 自然杂志, 2019, 41(3): 174-182. (Lin X Y, Liu B H, Kong F J. Molecular genetic basis of soybean adaptability[J]. Chinese Journal of Nature, 2019, 41(3): 174-182.)[27]Ryan M R, Mortensen D A,Bastiaans L, et al. Elucidating the apparent maize tolerance to weed competition in long-term organically managed systems[J]. Weed Research, 2010, 50(1): 25-36.[28]Thomas A G,Légère A, Leeson J Y, et al. Weed community response to contrasting integrated weed management systems for cool dryland annual crops[J]. Weed Research, 2011, 51(1): 41-50.[29]孙玥, 王春雷, 欧阳林娟, 等. 利用Real-time PCR对4个转Bt基因水稻的非预期效应研究[J]. 核农学报, 2018, 32(11): 2107-2118. (Sun Y, Wang C L, Ouyang L J. Study on the unintended effect of 4 Bt transgenic rice using real-time PCR[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(11): 2107-2118.)[30]Filipecki M, Malepszy S. Unintended consequences of plant transformation: A molecular insight[J]. Journal of Applied Genetics, 2006, 47(4): 277-286.[31]Xia H, Lu B R,Xu K, et al. Enhanced yield performance of Bt rice under target-insect attacks:Implications for field insect management[J]. Transgenic Research, 2011, 20(3): 655-664.[32]Yang X, Li L,Cai X X, et al. Efficacy of insect-resistance Bt/CpTI transgenes in F5-F7 generations of rice crop-weed hybrid progeny: Implications for assessing ecological impact of transgene flow[J]. Science Bulletin, 2015, 60(18): 1563-1571.[33]康岭生, 王玉民, 李葱葱, 等. 转Epsps基因大豆RR47对常规除草剂耐性的室内测定[J]. 吉林农业科学, 2009, 34(1): 11-13, 49. (Kang L S, Wang Y M, Li C C, et al. Tolerance of roundup-ready soybean to conventional herbicides[J]. Journal of Jilin Agricultural Sciences, 2009, 34(1): 11-13, 49.)
相似文献/References:
[1]林凡敏,柏锡,樊超,等.转GsGST14耐盐碱基因大豆的农艺性状调查[J].大豆科学,2013,32(01):56.[doi:10.3969/j.issn.1000-9841.2013.01.013]
LIN Fan-min,BAI Xi,FAN Chao,et al.Investigation and Analysis of the Main Agronomic Traits of Different Transgenic Soybean Lines with GsGST14 Gene[J].Soybean Science,2013,32(03):56.[doi:10.3969/j.issn.1000-9841.2013.01.013]
[2]芦春斌,周文,刘标.喂食转基因大豆对子代雄鼠生殖系统的影响[J].大豆科学,2013,32(01):119.[doi:10.3969/j.issn.1000-9841.2013.01.028]
LU Chun-bin,ZHOU Wen,LIU Biao.Effects of Transgenic Soybean on Reproductive System in Male Mice[J].Soybean Science,2013,32(03):119.[doi:10.3969/j.issn.1000-9841.2013.01.028]
[3]王 东,宋 君,叶先林,等.转基因大豆外源基因NOS终止子定量测定的不确定度分析[J].大豆科学,2013,32(05):601.[doi:10.11861/j.issn.1000-9841.2013.05.0601]
WANG Dong,SONG Jun,YE Xian-lin,et al.[J].Soybean Science,2013,32(03):601.[doi:10.11861/j.issn.1000-9841.2013.05.0601]
[4]程 遥.中国大豆种植业发展的思考[J].大豆科学,2013,32(05):711.[doi:10.11861/j.issn.1000-9841.2013.05.0711]
CHENG Yao.Consideration on the Development of China Soybean Industry[J].Soybean Science,2013,32(03):711.[doi:10.11861/j.issn.1000-9841.2013.05.0711]
[5]周 洁,于 崧,王珊珊,等.抗盐碱转基因大豆对根际土壤固氮细菌多样性的影响[J].大豆科学,2013,32(06):801.[doi:10.11861/j.issn.1000-9841.2013.06.0801]
ZHOU Jie,YU Song,WANG Shan-shan,et al.Effects of Salinization Resistance Transgenic Soybeans on Rhizosphere Soil Nitrogen-fixing Bacterial Diversity[J].Soybean Science,2013,32(03):801.[doi:10.11861/j.issn.1000-9841.2013.06.0801]
[6]厉 志,王曙明,刘 佳,等.广适性转bar基因大豆除草剂草丁膦筛选浓度的研究[J].大豆科学,2013,32(06):810.[doi:10.11861/j.issn.1000-9841.2013.06.0810]
LI zhi,WANG Shu-ming,LIU Jia,et al.Study on Screening Concentration of Wide Adaptability Herbicide Resistant? bar Transgenic Soybean[J].Soybean Science,2013,32(03):810.[doi:10.11861/j.issn.1000-9841.2013.06.0810]
[7]何龙凉,胡红东,李小琴,等.防城港口岸进境转基因大豆贸易概况及检验检疫分析[J].大豆科学,2013,32(04):539.[doi:10.11861/j.issn.1000-9841.2013.04.0539]
HE Long-liang,HU Hong-dong,LI Xiao-qin,et al.General Situation of Imported Genetically Modified Soybean in Fangchenggang Port and Its Inspection and Quarantine Analysis[J].Soybean Science,2013,32(03):539.[doi:10.11861/j.issn.1000-9841.2013.04.0539]
[8]周广彪,蔡 颖,陈文婉,等.QuickGene-810型自动核酸提取仪在转基因大豆检测中的应用研究[J].大豆科学,2014,33(03):434.[doi:10.11861/j.issn.1000-9841.2014.03.0434]
ZHOU Guang-biao,CAI Ying,CHEN Wen-wan,et al.Application of Quick Gene810 Automated Nucleic Acid Extraction Instrument on Detection of Genetically Modified Soybean[J].Soybean Science,2014,33(03):434.[doi:10.11861/j.issn.1000-9841.2014.03.0434]
[9]张彬彬,李永光,盖江南,等.转TaDREB3基因大豆基因漂流距离及频率的研究[J].大豆科学,2011,30(04):563.[doi:10.11861/j.issn.1000-9841.2011.04.0563]
ZHANG Bin-bin,LI Yong-guang,GAI Jiang-nan,et al.Distance and Frequency of Gene Flow in Transgenic Soybean Overexpressing TaDREB3[J].Soybean Science,2011,30(03):563.[doi:10.11861/j.issn.1000-9841.2011.04.0563]
[10]陈晟,郭丽琼,宋景深,等.T5代γ-亚麻酸转基因大豆的遗传稳定性分析[J].大豆科学,2012,31(01):24.[doi:10.3969/j.issn.1000-9841.2012.01.006]
CHEN Sheng,GUO Li-qiong,SONG Jing-shen,et al.Genetic Stability Analysis of the Fifth Generation of Transgenic Soybeans Expressing γ-linolenic Acid[J].Soybean Science,2012,31(03):24.[doi:10.3969/j.issn.1000-9841.2012.01.006]
备注/Memo