[1]张淑珍,闫晓飞,张传忠,等.植物BTB/POZ蛋白及其抗病性研究进展[J].大豆科学,2019,38(02):311-316.[doi:10.11861/j.issn.1000-9841.2019.02.0311]
 ZHANG Shu-zhen,YAN Xiao-fei,ZHANG Chuan-zhong,et al.Progress in the Studies of Plant BTB/POZ Protein and the Disease Resistance[J].Soybean Science,2019,38(02):311-316.[doi:10.11861/j.issn.1000-9841.2019.02.0311]
点击复制

植物BTB/POZ蛋白及其抗病性研究进展

参考文献/References:

[1]Schneider D S. Plant immunity and film noir : What gumshoe detectives can teach us about plant-pathogen interactions[J]. Cell, 2002, 109(5): 537-540.

[2]Bardwell V J, Treisman R. The POZ domain: A conserved protein-protein interaction motif[J]. Genes & Development, 1994, 8(14): 1664-1677.
[3]Stogios P J, Downs G S, Jauhal J J, et al. Sequence and structural analysis of BTB domain proteins[J]. Genome Biology, 2005, 6(10): R82.
[4]Zollman S, Godt D, Privé G G, et al. The BTB domain,found primarily in zinc finger proteins, defines an evolutionarily conserved family that includes several developmentally regulated genes in drosophila[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(22): 10717-10721.
[5]Harrison S D, Travers A A. The tramtrack gene encodes a drosophila finger protein that interacts with the FTZ transcriptional regulatory region and shows a novel embryonic expression pattern[J]. Embo Journal, 1990, 9(1): 207-216.
[6]Godt D, Couderc J L, Cramton S E, et al. Pattern formation in the limbs of Drosophila:Bric à brac is expressed in both a gradient and a wave-like pattern and is required for specification and proper segmentation of the tarsus[J]. Development, 1993, 119(3): 799-812.
[7]Phan R T, Dalla-Favera R. The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells[J]. Nature, 2004, 432(432): 635-639.
[8]Ahmad K F, Melnick A, Lax S, et al. Mechanism of SMRT corepressor recruitment by the BCL6 BTB domain[J]. Molecular Cell, 2003, 12(6): 1551-1564.
[9]Bomont P, Cavalier L, Blondeau F, et al. The gene encoding gigaxonin, a new member of the cytoskeletal BTB/kelch repeat family, is mutated in giant axonal neuropathy[J]. Nature Genetics, 2000, 26(6): 370-374.
[10]Collins T, Stone J R, Williams A. All in the family: The BTB/POZ, KRAB, and SCAN domains[J]. Molecular and Cellular Biology, 2001, 21(11):3609-3615.
[11]王重, 赵德标. BTB/POZ 蛋白质家族的结构和功能[J]. 生命的化学, 1997, 17(6): 10-13.(Wang C,Zhao D B. Structure and function of BTB/POZ protein family[J]. Chemistry of Life,1997,17(6): 10-13.)
[12]Dow M R, Mains P E. Genetic and molecular characterization of the caenorhabditis elegans gene, mel-26, a postmeiotic negative regulator of MEI-1, a meiotic-specific spindle component[J]. Genetics, 1998, 150(1): 119-128.
[13]Adams J, Kelso R, Cooley L. The kelch repeat superfamily of proteins:Propellers of cell function[J]. Trends in Cell Biology, 2000, 10(1): 17-24.
[14]Rivero F, Dislich H, Glckner G, et al. The Dictyostelium discoideum family of Rho-related proteins[J]. Nucleic Acids Research, 2001, 29(5): 1068-1079.
[15]Stogios P J, Privé G G. The BACK domain in BTB-kelch proteins[J]. Trends in Biochemical Sciences, 2004, 29(12): 634.
[16]Salasvidal E, Meijer A H, Cheng X, et al. Genomic annotation and expression analysis of the zebrafish Rho small GTPase family during development and bacterial infection[J]. Genomics, 2005, 86(1): 25-37.
[17]Puccetti E, Sennewald B, Foscaferrara F, et al. Down-stream regions of the POZ-domain influence the interaction of the tassociated PLZF/RARalpha fusion protein with the histonedeacetylase recruiting corepressor complex[J]. Hematology Journal, 2001, 2(6): 385-392.
[18]Doulatov S, Notta F, Rice K L, et al. PLZF is a regulator of homeostatic and cytokine-induced myeloid development[J]. Genes & Development, 2009, 23(17): 2076-2087.
[19]Gingerich D J, Hanada K, Shiu S H, et al. Large-scale,lineage-specific expansion of a bric-a-brac/tramtrack/broad complex ubiquitin-ligase gene family in rice[J]. Plant Cell, 2007,19(8):2329-2348.
[20]Cao H, Glazebrook J, Clarke J D, et al. The Arabidopsis NPR1, gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats[J]. Plant Cell, 1997, 88(1): 57.
[21]Ryals J, Weymann K, Lawton K, et al. The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor I kappa B[J]. Plant Cell, 1997, 9(3): 425-439.
[22]Cao H, Li X, Dong X. Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(11): 6531-6536.
[23]Chern M, Fitzgerald H A, Canlas P E, et al. Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light[J]. Molecular Plant Microbe Interactions, 2005, 18(6): 511-520.
[24]Silva K J, Brunings A, Peres N A, et al. The Arabidopsis NPR1 gene confers broad-spectrum disease resistance in strawberry[J]. Transgenic Research, 2015, 24(4): 693.
[25]Malnoy M, Jin Q, Borejszawysocka E E, et al. Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus×domestica[J]. Molecular Plant Microbe Interactions. 2007, 20(12): 1568-1580.
[26]Yocgo R E, Creissen G, Kunert K, et al. Two different banana NPR1-Like coding sequences confer similar protection against pathogens in Arabidopsis[J]. Tropical Plant Biology, 2012, 5(4): 309-316.
[27]Pieterse C M, van Wees S C, van Pelt J A, et al. A novel signaling pathway controlling induced systemic resistance in Arabidopsis[J]. Plant Cell, 1998, 10(9): 1571-1580.
[28]Iavicoli A, Boutet E, Buchala A, et al. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0[J]. Molecular Plant-Microbe Interactions, 2003, 16(10): 851-858.
[29]Spoel S H, Koornneef A, Claessens S M, et al. NPR1 modulates cross-talk between salicylate and jasmonate-dependent defense pathways through a novel function in the cytosol[J]. Plant Cell, 2003, 15(3): 760-770.
[30]Dong X. NPR1, all things considered[J]. Current Opinion in Plant Biology, 2004, 7(5): 547.
[31]Pieterse C M, Van Loon L C. NPR1: The spider in the web of induced resistance signaling pathways[J]. Current Opinion in Plant Biology, 2004, 7(4): 456-464.
[33]Padmanabhan M S, Dineshkumar S P. All hands on deck-the role of chloroplasts, endoplasmic reticulum, and the nucleus in driving plant innate immunity[J]. Molecular Plant Microbe Interactions, 2010, 23(23): 1368-1380.
[34]Kim C Y, Han M, Park C J, et al. Differential role for BiP3,in rice immune receptor mediated resistance[J]. Applied Biological Chemistry, 2014, 57(4): 539-542.
[35]Schornack S, Van D M, Bozkurt T O, et al. Ancient class of translocated oomycete effectors targets the host nucleus[J]. Proceedings of the National Academy of Sciences, 2010, 107(40): 17421-17426.
[36]Shen Q H, Saijo Y M, Auch S, et al. Nuclear activity of MLA immune receptors links isolate specific and basal disease-resistance responses[J]. Science, 2007, 315(5815): 1098-1103.
[37]Zhang Y, Fan W, Kinkema M, et al. Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(11): 6523.
[38]Huang Z, Zhang Z, Zhang X, et al. Tomato TERF1 modulates ethylene response and enhances osmotic stress tolerance by activating expression of downstream genes[J]. Febs Letters, 2004, 573(3): 110-116.
[39]Canet J V, Dobón A, Fajmonová J, et al. The BLADE-ON-PETIOLE genes of Arabidopsis are essential for resistance induced by methyl jasmonate[J]. BMC Plant Biology, 2012, 12(1): 199.
[40]Smalle J, Vierstra R D. The ubiquitin 26S proteasome proteolytic pathway[J]. Annual Review of Plant Biology, 2004, 55(1): 555-590.
[41]Lai X, Yue W, Jerome R, et al. BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL3[J]. Nature, 2003, 9(18): 316-321.
[42]Itoh K, Wakabayashi N, Katoh Y, et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain[J]. Genes & Developoment, 1999, 13(1): 76-86.
[43]Duda D M, Scott D C, Calabrese M F, et al. Structural regulation of cullin-RING ubiquitin ligase complexes[J]. Current Opinion in Structural Biology, 2010, 21(2): 257-264.
[44]Hua Z, Vierstra R D. The cullin-RING ubiquitin-protein ligases[J]. Annual Review of Plant Biology, 2011, 62(62): 299.
[45]Fincher G B. Molecular and cellular biology associated with endosperm mobilization in germinating cereal grains[J]. Annual Review of Plant Biology, 2003, 40(40): 305-346.
[46]Woodger F J, Jacobsen J V, Gubler F. GMPOZ, a BTB/POZ domain nuclear protein,is a regulator of hormone responsive gene expression in barley aleurone[J]. Plant and Cell Physiology, 2004, 45(7): 945-950.
[47]Kim H, Kim S H, Dong H S, et al. ABA-Hypersensitive BTB/POZ protein 1 functions as a negative regulator in ABA-mediated inhibition of germination in Arabidopsis[J]. Plant Molecular Biology, 2016, 90(3): 1-13.
[48]Estelle M, Genschik P, Hellmann H, et al. Arabidopsis AtCUL3a and AtCUL3b form complexes with members of the BTB/POZ-MATH protein family[J]. Plant Physiology, 2005, 137(1): 83-93.
[49]Lechner E, Leonhardt N, Eisler H, et al. MATH/BTB CRL3 receptors target the homeodomain-leucine zipper ATHB6 to modulate abscisic acid signaling[J]. Developmental Cell, 2011, 21(6): 1116-1128.
[50]Kinkema M, Fan W H, Dong X N. Nuclear localization of NPR1 is required for activation of PR gene expression[J]. Plant Cell, 2000, 12(12): 2339.
[51]Lebel E P, Thorne L, Uknes S, et al. Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis[J]. Plant Journal, 1998, 16(2): 223-233.
[52]Després C, Chubak C, Rochon A, et al. The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1[J]. Plant Cell, 2003, 15(9): 2181-2191.
[53]Subramaniam R, Desveaux D, Spickler C, et al. Direct visualization of protein interactions in plant cells[J]. Nature Biotechnology, 2001, 19(8): 769-772.
[54]Johnson C, Boden E, Arias J. Salicylic acid and NPR1 induce the recruitment of trans-activating TGA factors to a defense gene promoter in Arabidopsis[J]. Plant Cell, 2003, 15(8): 1846-1858.
[55]Zhang Y, Tessaro M J, Lassner M, et al. Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance[J]. Plant Cell, 2003, 15(11): 2647.
[56]Rochon A, Boyle P, Wignes T, et al. The coactivator function of Arabidopsis NPR1 requires the core of its BTB/POZ domain and the oxidation of C-terminal cysteines[J]. Plant Cell, 2006, 18(12): 3670.
[57]Li X, Zhang Y, Clarke J D, et al. Identification and cloning of a negative regulator of systemic acquired resistance, SNI1, through a screen for suppressors of npr1-1[J]. Plant Cell, 1999, 98(3): 329-339.
[58]Chern M, Fitzgerald H A, Canlas P E, et al. Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light[J]. Molecular Plant Microbe Interactions, 18(6): 511-520.
[59]贾彩红, 张丽丽, 金志强, 等. 香蕉 BTB/POZ 域基因的克隆及表达分析[J]. 中国生物工程杂志, 2010, 30(11): 30-33.(Jia C H,Zhang L L, Jin Z Q, et al. Cloning and expression analysis of BTB/POZ gene in banana[J]. China Biotechnology, 2010, 30(11): 30-33.)
[60]Ahmad K F, Melnick A, Lax S, et al. Mechanism of SMRT corepressor recruitment by the BCL6 BTB domain[J]. Molecular Cell, 2003, 12(6): 1551-1564.
[61]Melnick A, Ahmad K F, Arai S, et al. In-depth mutational analysis of the promyelocytic leukemia zinc finger BTB/POZ domain reveals motifs and residues required for biological and transcriptional functions[J]. Molecular & Cellular Biology, 2000, 20(17): 6550-6567.
[62]Hu J. KBTBD7, a novel human BTB-kelch protein, activates transcriptional activities of SRE and AP-1[J]. BMB Reports, 2010, 43(1): 17-22.

相似文献/References:

[1]杨庆凯,武天龙,徐淑芬,等.大豆优异抗病种质东农9674[J].大豆科学,1996,15(02):181.[doi:10.11861/j.issn.1000-9841.1996.02.0181]
 [J].Soybean Science,1996,15(02):181.[doi:10.11861/j.issn.1000-9841.1996.02.0181]
[2]颜清上,王连铮.大豆抗孢囊线虫基础研究[J].大豆科学,2018,37(王连铮先生专辑):118.[doi:10.11861/j.issn.1000-9841.1996.04.0345]
[3]矫洪双,程志明,许修宏,等.大豆种质资源对菌核病的抗性鉴定研究[J].大豆科学,1994,13(04):349.[doi:10.11861/j.issn.1000-9841.1994.04.0349]
 [J].Soybean Science,1994,13(02):349.[doi:10.11861/j.issn.1000-9841.1994.04.0349]
[4]曹金锋,胡铁欢,孙永媛,等.高产广适抗病大豆新品种沧豆09Y1选育[J].大豆科学,2020,39(01):160.[doi:10.11861/j.issn.1000-9841.2020.01.0160]
 CAO Jin-feng,HU Tie-huan,SUN Yong-yuan,et al.Breeding of a High-Yield Widespread Disease Resistant New Soybean Variety Cangdou 09Y1[J].Soybean Science,2020,39(02):160.[doi:10.11861/j.issn.1000-9841.2020.01.0160]
[5]李 凯,盖钧镒,孙长美,等.抗病优质高产大豆新品种南农413[J].大豆科学,2020,39(01):162.[doi:10.11861/j.issn.1000-9841.2020.01.0162]
 LI Kai,GAI Jun-yi,SUN Chang-mei,et al.High Yield, Resistance and Quality Soybean Cultivar Nannong 413[J].Soybean Science,2020,39(02):162.[doi:10.11861/j.issn.1000-9841.2020.01.0162]
[6]邸锐,赵青松,刘兵强,等.国审高产抗病大豆新品种冀豆24的选育及栽培技术[J].大豆科学,2021,40(02):285.[doi:10.11861/j.issn.1000-9841.2021.02.0285]
 DI Rui,ZHAO Qing-song,LIU Bing-qiang,et al.Breeding and Cultivation Techniques of A New Soybean Cultivar Jidou 24 with High Yield and Disease Resistance[J].Soybean Science,2021,40(02):285.[doi:10.11861/j.issn.1000-9841.2021.02.0285]
[7]侯云龙,李健琳,李明姝,等.高产抗病大豆新品种吉育513的选育及栽培技术[J].大豆科学,2024,43(02):245.[doi:10.11861/j.issn.10009841.2024.02.0245]

备注/Memo

收稿日期:2018-05-29

基金项目:国家自然科学基金(31671719);国家重点研发计划( 2017YFD0101300)。
第一作者简介:张淑珍(1972-),女,博士,教授,主要从事大豆遗传育种研究。E-mail: zhangshuzhen@neau.edu.cn。

更新日期/Last Update: 2019-04-01