LIU Lai-pan,LIU Biao.Effects of Transgenic Glyphosate-Tolerate Soybean on Pollen Viability[J].Soybean Science,2018,37(05):736-740.[doi:10.11861/j.issn.1000-9841.2018.05.0736]
耐除草剂转基因大豆对花粉生活力的影响
- Title:
- Effects of Transgenic Glyphosate-Tolerate Soybean on Pollen Viability
- Keywords:
- Transgenic soybean; Pollen germination; Gene flow
- 文献标志码:
- A
- 摘要:
- 转基因作物的环境安全评价是其商业化推广前的必要环节,其基因漂移风险及其可能引起的生态环境效应是安全性评价的重要内容。为了明确转EPSPS、PAT基因抗草甘膦大豆S4003.12和S4003.14外源基因的逃逸风险,于大豆盛花期选取温室种植的转基因大豆、其受体品种及常规栽培大豆材料花粉,使用液体培养基培养,检测其萌发率,并于带标尺显微镜下观察其花粉粒直径。结果表明:大豆花粉刚离体后萌发活力最强,培养2 h后花粉萌发率基本达到最大值约88.2%,随离体时间延长萌发活力随之下降,室温放置3 h后,花粉几近完全失活;与非转基因对照相比,转EPSPS、PAT基因耐除草剂大豆S4003.12和S4003.14的花粉离体后的生存能力无显著差异,对花粉粒直径大小无显著差异。研究表明耐除草剂转基因大豆花粉传播能力与非转基因大豆间无显著差异,通过设置隔离区可有效规避外源基因逃逸风险。
- Abstract:
- The risk of gene flow and the possible ecological environmental effects of the transgenic crops are the important contents of the safety assessment which is a necessary link before the commercialization. For assessing the genetic flow risk of Glyphosate-Tolerate Soybean S4003.12 and S4003.14, the germination rate of pollen in profuse flowering seasons from transgenic soybean, its receptor and conventional cultivated soybean varieties which selected in the greenhouses were detected by fluid nutrient medium, and the diameter of pollen grains were observed under scale microscope. The results showed that pollen germination rate of soybean was strongest when the pollen just in vitro which approximately 88.2% after 2 h. The germination vigor of the pollen decreased with the lengthening of the time in vitro, the pollen was almost completely inactivated when put it at room temperature for 3 h. No significant effect on the viability of pollen in vitro and the diameter of pollen grains between the Glyphosate-Tolerate Soybean S4003.12, S4003.14 and the normal control. The study showed that there was no significant difference between the pollen transmission ability of glyphosate resistant transgenic soybean and non transgenic soybean and the risk of extraneous gene escape could be effectively avoided by setting the isolation zone.
参考文献/References:
相似文献/References:
[1]林凡敏,柏锡,樊超,等.转GsGST14耐盐碱基因大豆的农艺性状调查[J].大豆科学,2013,32(01):56.[doi:10.3969/j.issn.1000-9841.2013.01.013]
LIN Fan-min,BAI Xi,FAN Chao,et al.Investigation and Analysis of the Main Agronomic Traits of Different Transgenic Soybean Lines with GsGST14 Gene[J].Soybean Science,2013,32(05):56.[doi:10.3969/j.issn.1000-9841.2013.01.013]
[2]芦春斌,周文,刘标.喂食转基因大豆对子代雄鼠生殖系统的影响[J].大豆科学,2013,32(01):119.[doi:10.3969/j.issn.1000-9841.2013.01.028]
LU Chun-bin,ZHOU Wen,LIU Biao.Effects of Transgenic Soybean on Reproductive System in Male Mice[J].Soybean Science,2013,32(05):119.[doi:10.3969/j.issn.1000-9841.2013.01.028]
[3]王 东,宋 君,叶先林,等.转基因大豆外源基因NOS终止子定量测定的不确定度分析[J].大豆科学,2013,32(05):601.[doi:10.11861/j.issn.1000-9841.2013.05.0601]
WANG Dong,SONG Jun,YE Xian-lin,et al.[J].Soybean Science,2013,32(05):601.[doi:10.11861/j.issn.1000-9841.2013.05.0601]
[4]程 遥.中国大豆种植业发展的思考[J].大豆科学,2013,32(05):711.[doi:10.11861/j.issn.1000-9841.2013.05.0711]
CHENG Yao.Consideration on the Development of China Soybean Industry[J].Soybean Science,2013,32(05):711.[doi:10.11861/j.issn.1000-9841.2013.05.0711]
[5]周 洁,于 崧,王珊珊,等.抗盐碱转基因大豆对根际土壤固氮细菌多样性的影响[J].大豆科学,2013,32(06):801.[doi:10.11861/j.issn.1000-9841.2013.06.0801]
ZHOU Jie,YU Song,WANG Shan-shan,et al.Effects of Salinization Resistance Transgenic Soybeans on Rhizosphere Soil Nitrogen-fixing Bacterial Diversity[J].Soybean Science,2013,32(05):801.[doi:10.11861/j.issn.1000-9841.2013.06.0801]
[6]厉 志,王曙明,刘 佳,等.广适性转bar基因大豆除草剂草丁膦筛选浓度的研究[J].大豆科学,2013,32(06):810.[doi:10.11861/j.issn.1000-9841.2013.06.0810]
LI zhi,WANG Shu-ming,LIU Jia,et al.Study on Screening Concentration of Wide Adaptability Herbicide Resistant? bar Transgenic Soybean[J].Soybean Science,2013,32(05):810.[doi:10.11861/j.issn.1000-9841.2013.06.0810]
[7]何龙凉,胡红东,李小琴,等.防城港口岸进境转基因大豆贸易概况及检验检疫分析[J].大豆科学,2013,32(04):539.[doi:10.11861/j.issn.1000-9841.2013.04.0539]
HE Long-liang,HU Hong-dong,LI Xiao-qin,et al.General Situation of Imported Genetically Modified Soybean in Fangchenggang Port and Its Inspection and Quarantine Analysis[J].Soybean Science,2013,32(05):539.[doi:10.11861/j.issn.1000-9841.2013.04.0539]
[8]周广彪,蔡 颖,陈文婉,等.QuickGene-810型自动核酸提取仪在转基因大豆检测中的应用研究[J].大豆科学,2014,33(03):434.[doi:10.11861/j.issn.1000-9841.2014.03.0434]
ZHOU Guang-biao,CAI Ying,CHEN Wen-wan,et al.Application of Quick Gene810 Automated Nucleic Acid Extraction Instrument on Detection of Genetically Modified Soybean[J].Soybean Science,2014,33(05):434.[doi:10.11861/j.issn.1000-9841.2014.03.0434]
[9]张彬彬,李永光,盖江南,等.转TaDREB3基因大豆基因漂流距离及频率的研究[J].大豆科学,2011,30(04):563.[doi:10.11861/j.issn.1000-9841.2011.04.0563]
ZHANG Bin-bin,LI Yong-guang,GAI Jiang-nan,et al.Distance and Frequency of Gene Flow in Transgenic Soybean Overexpressing TaDREB3[J].Soybean Science,2011,30(05):563.[doi:10.11861/j.issn.1000-9841.2011.04.0563]
[10]陈晟,郭丽琼,宋景深,等.T5代γ-亚麻酸转基因大豆的遗传稳定性分析[J].大豆科学,2012,31(01):24.[doi:10.3969/j.issn.1000-9841.2012.01.006]
CHEN Sheng,GUO Li-qiong,SONG Jing-shen,et al.Genetic Stability Analysis of the Fifth Generation of Transgenic Soybeans Expressing γ-linolenic Acid[J].Soybean Science,2012,31(05):24.[doi:10.3969/j.issn.1000-9841.2012.01.006]
备注/Memo
收稿日期:2018-06-25