ZHANG Dong-qing,LIU Huan,ZHANG Yun-qing.Forecasting Chinese Domestic Soybean Price Based on Q-RBF Neural Network Model[J].Soybean Science,2017,36(01):143-149.[doi:10.11861/j.issn.1000-9841.2017.01.0143]
基于Q-RBF神经网络模型的国产大豆价格预测研究
- Title:
- Forecasting Chinese Domestic Soybean Price Based on Q-RBF Neural Network Model
- Keywords:
- Forecasting; Quantile regression-radial basis function (Q-RBF) neural network; Gradient descent method; Genetic algorithm; Probability density function
- 文献标志码:
- A
- 摘要:
- 大豆是重要的经济作物,同时也是我国市场化和国际化程度最高的大宗农产品,对其价格进行预测具有重要意义。采用Q-RBF神经网络模型对国产大豆价格进行预测,该模型具有如下两个特点:(1)通过分位数回归功能来描述大豆在不同价格水平下的分布特征;(2)通过RBF神经网络结构来刻画大豆价格的非线性关系。在模型参数优化时,由于遗传算法是一种全局搜索优化方法,但是搜索速度慢、对初始值具有一定依赖性;而梯度下降法具有收敛快,对初始值没有特定要求等优点,所以本文提出遗传算法与梯度下降法相结合的混合改进算法,其基本思想是利用梯度下降法的局部寻优能力加快遗传算法的收敛速度。采用2010年1月-2015年12月的国产大豆月度价格数据进行预测研究,结果表明,算法收敛速度较快,模型预测精度较高,是可以泛化应用的预测模型。
- Abstract:
- Soybean is an important cash crop, and it is also the most important agricultural product with the highest degree of marketization and internationalization character in China. So it is essential to forecast the soybean price. A Quantile-RBF (Q-RBF) neural network model is proposed to predict Chinese domestic soybean price in this paper. The model has two characteristics as follows: (1) Quantile regression models describe the distribution over the range of the soybean price; (2) RBF neural networks approximate the nonlinear part of soybean price. The parameters of Q-RBF neural network model can be optimized through the genetic algorithm (GA) and the gradient descent method. GA is a global optimization method, however, it might be slow in convergence. On the contrary, the gradient descent method quickly converges to an optimal solution, but may converge to a local minimum or maximum and is not efficient in discontinuous problems. Therefore, an improved algorithm combining GA with gradient descent method is proposed in this paper. In the improved algorithm, the gradient descent method is used to improve the convergence efficiency of GA. The data of monthly soybean price from Jan. 2010 to Dec. 2015 were analyzed. Experimental results demonstrated that the Q-RBF neural network model and improved algorithm were accurate and effective.
参考文献/References:
[1]奚晓菁. 我国大豆价格波动影响因素分析[D]. 昆明: 云南财经大学, 2013. (Xi X J. Analysis on the influencing factors of soybean price fluctuation in China[D]. Kunming: Yunnan University of Finance and Economics, 2013.)
相似文献/References:
[1]祁雪莲,邓华玲,徐 丹,等.数量化理论在预测大豆食心虫发生概率上的应用[J].大豆科学,2012,31(04):640.[doi:10.3969/j.issn.1000-9841.2012.04.026]
QI Xue-lian,DENG Hua-ling,XU Dan,et al.Application of Quantification Theory in Predicting Occurrence Probability of Soybean Pod Borer[J].Soybean Science,2012,31(01):640.[doi:10.3969/j.issn.1000-9841.2012.04.026]
[2]姚鑫淼 张瑞英 李霞辉 程爱华 张晓波 高春霞.近红外透射光谱法(NITS)分析大豆品质的研究*[J].大豆科学,2006,25(04):417.[doi:10.11861/j.issn.1000-9841.2006.04.0417]
Yao Xinmiao Zhang Ruiying Li Xiahui Cheng Aihua Zhang Xiaobo Gao Chunxia.STUDY ON ANALYSIS OF SOYBEAN QUALITY BY NEARINFRARED TRANSMITTANCE SPECTROSCOPY[J].Soybean Science,2006,25(01):417.[doi:10.11861/j.issn.1000-9841.2006.04.0417]
[3]刘志芳.大豆产量预测预控数学模型的研究[J].大豆科学,1991,10(03):187.[doi:10.11861/j.issn.1000-9841.1991.03.0187]
[J].Soybean Science,1991,10(01):187.[doi:10.11861/j.issn.1000-9841.1991.03.0187]
[4]程志明,矫洪双,陆修德,等.大豆菌核病流行预测研究[J].大豆科学,1994,13(01):48.[doi:10.11861/j.issn.1000-9841.1994.01.0048]
[J].Soybean Science,1994,13(01):48.[doi:10.11861/j.issn.1000-9841.1994.01.0048]
[5]徐鑫洲,马开平.基于系统动力学的我国大豆价格预测分析[J].大豆科学,2018,37(05):787.[doi:10.11861/j.issn.1000-9841.2018.05.0787]
XU Xin-zhou,MA Kai-ping.Prediction and Analysis of Soybean Price in China Based on System Dynamics[J].Soybean Science,2018,37(01):787.[doi:10.11861/j.issn.1000-9841.2018.05.0787]
[6]马宏伟,白荻,李静,等.中国大豆2021—2025年消费量和生产量预测分析[J].大豆科学,2022,41(03):358.[doi:10.11861/j.issn.1000-9841.2022.03.0358]
MA Hong-wei,BAI Di,LI Jing,et al.Prediction and Analysis of China’s Soybean Consumption and Production in 2021—2025[J].Soybean Science,2022,41(01):358.[doi:10.11861/j.issn.1000-9841.2022.03.0358]
备注/Memo
基金项目:国家自然科学基金(71301077);南京农业大学中央高校基本科研业务费人文社会科学基金(SK2014011)。