[1]张冬青,刘欢,张云清.基于Q-RBF神经网络模型的国产大豆价格预测研究[J].大豆科学,2017,36(01):143-149.[doi:10.11861/j.issn.1000-9841.2017.01.0143]
 ZHANG Dong-qing,LIU Huan,ZHANG Yun-qing.Forecasting Chinese Domestic Soybean Price Based on Q-RBF Neural Network Model[J].Soybean Science,2017,36(01):143-149.[doi:10.11861/j.issn.1000-9841.2017.01.0143]
点击复制

基于Q-RBF神经网络模型的国产大豆价格预测研究

参考文献/References:

[1]奚晓菁. 我国大豆价格波动影响因素分析[D]. 昆明: 云南财经大学, 2013. (Xi X J. Analysis on the influencing factors of soybean price fluctuation in China[D]. Kunming: Yunnan University of Finance and Economics, 2013.)

[2]张婷. 基于ARIMA模型的国际粮食短期价格分析预测—以大豆为例[J]. 价格月刊, 2016, (470): 28-32. (Zhang T. Analysis and prediction of short term international grain price based on ARIMA model: A case study of soybean[J]. Prices Monthly, 2016, (470): 28-32.)
[3]朱婧, 范亚东, 徐勇. 基于改进GM(1,1)模型的中国大豆价格预测[J]. 大豆科学, 2016, 35(2): 315-319. (Zhu J, Fan Y D, Xu Y. Soybean price prediction in china based on modified GM(1,1) model[J]. Soybean Science, 2016, 35(2): 315-319.)
[4]程文晓. 我国大豆期货价格的预测分析[D]. 兰州: 兰州大学, 2014. (Cheng W X. Forecasting of soybean futures prices in China[D]. Lanzhou: Lanzhou University, 2014.)
[5]石波, 张冬青, 马开平,等. 改进RBF神经网络在我国大豆价格预测中的应用研究[J]. 大豆科学, 2016, 35(2): 310-314. (Shi B, Zhang D Q, Ma K P, et al. Soybean price prediction in China based on improved RBF neural network[J]. Soybean Science, 2016, 35(2): 310-314.)
[6]毛学峰, 贾伟. 大豆及制成品动态特征价格的实证研究[J]. 农业技术经济, 2016(7):73-80. (Mao X F, Jia W. An empirical study on the price of dynamic characteristics of soybean and manufactured goods[J]. Journal of Agrotechnical Economics, 2016(7):73-80.)
[7]Berwald D, Havenner A. Evaluating state space forecasts of soybean complex prices [M]// Aoki M, et al .Applications of computer aided time series modeling. New York:Springer-Verlag, Inc. 1997.
[8]Arnade C, Hoffman L.The impact of price variability on cash/futures market relationships: Implications for market efficiency and price discovery[J]. Journal of Agricultural & Applied Economics, 2015, 47(4): 539-559.
[9]Adrangi B, Chatrath A, Raffiee K. Price discovery in the soybean futures market[J]. Journal of Business & Economics Research, 2011, 4(6): 77-88.
[10]Koenker R, Bassett G W. Regression quantiles[J]. Econometric, 1978, 46:33-50.
[11]Taylor J W. A quantile regression neural network approach to estimating the conditional density of multiperiod returns[J]. Journal of Forecasting, 2000, 19(4): 299-311.
[12]许启发, 蒋翠侠. 分位数局部调整模型及应用[J]. 数量经济技术经济研究, 2011(8): 115-133. (Xu Q F, Jiang C X. Quantile partial adjustment model and its application[J]. The Journal of Quantitative & Technical Economics, 2011(8): 115-133.)
[13]Cannon A J. Quantile regression neural networks: Implementation in R and application to precipitation downscaling[J]. Computers & Geosciences, 2011, 37: 1277-1284.
[14]何耀耀, 许启发, 杨善林等. 基于RBF神经网络分位数回归的电力负荷概率密度预测方法[J]. 中国电机工程学报, 2013, 33(1): 93-98. (He Y Y, Xu Q F, Yang S L, et al. A power load probability density forecasting method based on RBF neural network quantile regression[J]. Proceedings of the CSEE, 2013, 33(1): 93-98.)
[15]Mok T K, Liu H M, Ni Y X, et al. Tuning the fuzzy damping controller for UPFC through genetic algorithm with comparison to the gradient descent training[J].Electrical Power and Energy Systems, 2005, 27: 275-283.
[16]刘欢, 张冬青. 基于分位数回归的国产大豆价格影响因素分析[J]. 大豆科学, 2014, 33(5): 759-763. (Liu H, Zhang D Q. Analysis on influencing factors of domestic soybean price based on quantile regression[J]. Soybean Science, 2014, 33(5): 759-763.)

相似文献/References:

[1]祁雪莲,邓华玲,徐 丹,等.数量化理论在预测大豆食心虫发生概率上的应用[J].大豆科学,2012,31(04):640.[doi:10.3969/j.issn.1000-9841.2012.04.026]
 QI Xue-lian,DENG Hua-ling,XU Dan,et al.Application of Quantification Theory in Predicting Occurrence Probability of Soybean Pod Borer[J].Soybean Science,2012,31(01):640.[doi:10.3969/j.issn.1000-9841.2012.04.026]
[2]姚鑫淼 张瑞英 李霞辉 程爱华 张晓波   高春霞.近红外透射光谱法(NITS)分析大豆品质的研究*[J].大豆科学,2006,25(04):417.[doi:10.11861/j.issn.1000-9841.2006.04.0417]
 Yao Xinmiao Zhang Ruiying Li Xiahui Cheng Aihua Zhang Xiaobo Gao Chunxia.STUDY ON ANALYSIS OF SOYBEAN QUALITY BY NEARINFRARED TRANSMITTANCE SPECTROSCOPY[J].Soybean Science,2006,25(01):417.[doi:10.11861/j.issn.1000-9841.2006.04.0417]
[3]刘志芳.大豆产量预测预控数学模型的研究[J].大豆科学,1991,10(03):187.[doi:10.11861/j.issn.1000-9841.1991.03.0187]
 [J].Soybean Science,1991,10(01):187.[doi:10.11861/j.issn.1000-9841.1991.03.0187]
[4]程志明,矫洪双,陆修德,等.大豆菌核病流行预测研究[J].大豆科学,1994,13(01):48.[doi:10.11861/j.issn.1000-9841.1994.01.0048]
 [J].Soybean Science,1994,13(01):48.[doi:10.11861/j.issn.1000-9841.1994.01.0048]
[5]徐鑫洲,马开平.基于系统动力学的我国大豆价格预测分析[J].大豆科学,2018,37(05):787.[doi:10.11861/j.issn.1000-9841.2018.05.0787]
 XU Xin-zhou,MA Kai-ping.Prediction and Analysis of Soybean Price in China Based on System Dynamics[J].Soybean Science,2018,37(01):787.[doi:10.11861/j.issn.1000-9841.2018.05.0787]
[6]马宏伟,白荻,李静,等.中国大豆2021—2025年消费量和生产量预测分析[J].大豆科学,2022,41(03):358.[doi:10.11861/j.issn.1000-9841.2022.03.0358]
 MA Hong-wei,BAI Di,LI Jing,et al.Prediction and Analysis of China’s Soybean Consumption and Production in 2021—2025[J].Soybean Science,2022,41(01):358.[doi:10.11861/j.issn.1000-9841.2022.03.0358]

备注/Memo

基金项目:国家自然科学基金(71301077);南京农业大学中央高校基本科研业务费人文社会科学基金(SK2014011)。

第一作者简介:张冬青(1971-),女,博士,副教授,主要从事预测与决策、农业系统工程研究。E-mail:hollycase@163.com。

更新日期/Last Update: 2017-03-15