[1]阚贵珍,童振峰,胡振宾,等.野生大豆和抗草甘膦转基因大豆杂交后代的适合度分析[J].大豆科学,2015,34(02):177-184.[doi:10.11861/j.issn.1000-9841.2015.02.0177]
 KAN Gui-zhen,TONG Zhen-feng,HU Zhen-bin,et al.Fitness of Hybrids between Wild Soybeans (Glycine soja) and the Glyphosate-resistant Transgenic Soybean (Glycine max)[J].Soybean Science,2015,34(02):177-184.[doi:10.11861/j.issn.1000-9841.2015.02.0177]
点击复制

野生大豆和抗草甘膦转基因大豆杂交后代的适合度分析

参考文献/References:

[1]Zhuang B C. Biological studies of wild soybeans in China [M]Beijing: Science Press, 1999.

[2]Dong Y S, Zhuang B C, Zhao L M, et al. The genetic diversity of annual wild soybeans grown in China [J] Theoretical and Applied Genetics, 2001, 103: 98-103.
[3]Lu B R. Conserving biodiversity of soybean gene pool in the biotechnology era [J] Plant Species Biology, 2004, 19: 115-125.
[4]Lu B R. Multidirectional gene flow among wild, weedy, and cultivated soybeans. In: Crop ferality and volunteerism [M] Edited by Gressel J B. CRC Press, Taylor and Francis, Boca Rato, Florida, 2005: 137-147.
[5]Andersson M S, de Vicente M C. Gene flow between crops and their wild relatives[M].Foreword by NC Ellstrand. Johns Hopkins University Press, 2010: 465-481.
[6]Mizuguti A, Ohigashi K, Yoshimura Y, et al. Hybridization between GM soybean (Glycine max (L) Merr) and wild soybean (Glycine soja Sieb et Zucc) under field conditions in Japan[J]. Environmental Biosafety Research, 2010, 9: 13-23.
[7]Wang K J, Li X H. Interspecific gene flow and the origin of semi-wild soybean revealed by capturing the natural occurrence of introgression between wild and cultivated soybean populations [J] Plant Breeding, 2011, 130: 117-127.
[8]Jin Y, He T H, Lu B R. Fine scale genetic structure in a wild soybean (Glycine soja) population and the implications for conservation [J]. New Phytologist, 2003, 159: 513-519.
[9]Wang K J, Li X H, Zhang J J, et al. Natural introgression from cultivated soybean (Glycine max) into wild soybean (Glycine soja) with the implications for origin of populations of semi-wild type and for biosafety of wild species in China [J] Genetic Resources and Crop Evolution, 2010, 57: 747-761.
[10]Wang K J, Li X H. Genetic diversity and gene flow dynamics revealed in the rare mixed populations of wild soybean (Glycine soja) and semi-wild type (Glycine gracilis) in China [J] Genetic Resources and Crop Evolution, 2013, 60: 2303-2318.
[11]Wang K J, Li X H. Genetic characterization and gene flow in different geographical-distance neighbouring natural populations of wild soybean (Glycine soja.Sieb & Zucc) and implications for protection from GM soybeans [J] Euphytica, 2012, 186: 817-830.
[12]Padgette S R, Re D B, Barry G F, et al. New weed control opportunities: development of soybeans with a Roundup Readpgene [M]//Dukeso Herbicide Resistant Crops.Boca Raton, FL: CRC Press, 1996: 53-84.
.[13]Nakayama Y, Yamaguchi H. Natural hybridization in wild soybean (Glycine max ssp soja) by pollen flow from cultivated soybean (Glycine max ssp max) in a designed population [J]Weed Biology and Management, 2002, 2: 25-30.
[14]James C. Global status of commercialized Biotech/G M Crops: 2012. ISAAA Brief No.44- ISAAA Ithaca NY.
[15]Abe J, Hasegawa A, Fukushi H, et al. Introgression between wild and cultivated soybeans of Japan revealed by RFLP anaysis for chloroplast DNAs [J]Economic Botany, 1999, 53: 285-291.
[16]Oka H I. Genetic control of regenerating success in semi-natural conditions observed among lines derived from a cultivated × wild soybean hybrid [J] Journal of Applied Ecology, 1983, 20: 937-949.
[17]Wang K J, Li X H, Li F S. Fine-scale phylogenetic structure and major events in the history of the current wild soybean (Glycine soja) and axonomic assignment of semiwild type (Glycine gracilis. Skvortz) within the Chinese subgenus soja [J] Journal of Heredity, 2012, 103: 13-27.
[18]Mizuguti A, Yoshimura Y, Matsuo K. Flowering phenologies and natural hybridization of genetically modified and wild soybeans under field conditions [J] Weed Biology and Management, 2009, 9: 93-96.
[19]Jenczewski E, Ronfort J, Chèvre A M. Crop-to-wild gene flow, introgression and possible fitness effects of transgenes [J] Environmental Biosafety Research, 2003, 2(1): 9-24.
[20]Hails R S, Morley K. Genes invading new populations: a risk assessment perspective [J]. Trends in Ecology and Evolution, 2005, 20 (5): 245-252.
[21]Song Z P, Lu B R, Wang B, et al. Fitness estimation through performance comparison of F1?hybrids with their parental species Oryza rufipogon and O sativa [J]Annals of Botany, 2004, 93: 311-316.
[22]van den Bulcke M, de Schrijver A, de Bernardi D, et al. Detection of genetically modified plant products by protein strip testing: an evaluation of real-life samples [J]European Food Research and Technology, 2007, 225(1): 49-57.
[23]Berdal K G, Holst.Jensen A. Roundup Ready soybean event-specific real-time quantitative PCR assay and estimation of the practical detection and quantification limits in GMO analyses [J] European Food Research and Technology, 2001, 213: 432-438.
[24]Zhang N Y, Linscombem S, Oard J. Out-crossing frequency and genetic analysis of hybrids between transgenic glufosinate herbicide-resistant rice and the weed, red rice [J] Euphytica, 2003, 130: 35-45.
[25]Wang W, Xia H, Yang X, et al. A novel 5.enolpyruvoylshikimate-3-phosphate (EPSP) synthase transgene for glyphosate resistance stimulates growth and fecundity in weedy rice (Oryza sativa) without herbicide [J]New Phytologist, 2014, 202(2): 679-688.
[26]Snow A A, Andersen B, Jorgensen R B. Costs of transgenic herbicide resistance introgressed from Brassica napus into weedy B.rapa [J] Molecular Ecology, 1999, 8: 605-615.
[27]Allainguillaume J, Alexander M, Bullock J M, et al. Fitness of hybrids between rapeseed (Brassica napus) and wild Brassica rapa in natural habitats [J] Molecular Ecology, 2006, 15:1175-1184.
[28]Snow A A, Moran.Palma P, Rieseberg L H, et al. Fecundity, phenology, and seed dormancy of F1?wild-crop hybrids in sunflower (Helianthus annuus, Asteraceae) [J]American Journal of Botany, 1998, 85: 794-801..
[29]Spencer L J, Snow A A. Fecundity of transgenic wild-crop hybrids of Cucurbita pepo(Cucurbitaceae): implications for crop-to-wild gene flow [J] Heredity, 2001, 86: 694-702.
[30]Campbell L G, Snow A A, Ridley C E. Weed evolution after crop gene introgression: greater survival and fecundity of hybrids in a new environment [J] Ecology Letters, 2006, 9: 1198-1209.
[31]Ahmad Q N, Britten E J, Byth D E. Inversion heterozygosity in the hybrid soybean× Glycine soja Evidence from a pachytene loop configuration and other meiotic irregularities [J] Journal of Heredity, 1979, 70(6): 358-364..
[32]Cain M L, Milligan B C, Sterand A E. Long-distance seed dispersal in plant populations [J]American Journal of Botany, 2000, 87: 1217-1227.
[33]Kuroda Y, Kaga A, Tomooka N, et al. Gene flow and genetic structure of wild soybean (Glycine soja) in Japan [J] Crop Science, 2008, 48: 1071-1079.

相似文献/References:

[1]高越,刘辉,陶波.抗草甘膦野生大豆筛选及其抗性生理机制研究[J].大豆科学,2013,32(01):76.[doi:10.3969/j.issn.1000-9841.2013.01.018]
 GAO Yue,LIU Hui,TAO Bo.Screening and Physiological Mechanisms of Resistance to Glyphosate in Wild Soybeans(Glycine soja)[J].Soybean Science,2013,32(02):76.[doi:10.3969/j.issn.1000-9841.2013.01.018]
[2]王军卫,侯立江,李? 登,等.野生大豆紫色酸性磷酸酶PAP1基因的克隆及分析[J].大豆科学,2013,32(05):596.[doi:10.11861/j.issn.1000-9841.2013.05.0596]
 WANG Jun-wei,HOU Li-jiang,LI Deng,et al.Cloning and Sequence Analysis of Purple Acid Phosphotase PAP1 Gene in Wild Soybean[J].Soybean Science,2013,32(02):596.[doi:10.11861/j.issn.1000-9841.2013.05.0596]
[3]王军卫,侯立江,李 登,等. 野生大豆紫色酸性磷酸酶PAP1基因的克隆及分析[J].大豆科学,2013,32(05):596.
 WANG Jun-wei,HOU Li-jiang,LI Deng,et al. Cloning and Sequence Analysis of Purple Acid Phosphotase PAP1 Gene in Wild Soybean[J].Soybean Science,2013,32(02):596.
[4]王丽燕.硅对野生大豆幼苗耐盐性的影响及其机制研究[J].大豆科学,2013,32(05):659.[doi:10.11861/j.issn.1000-9841.2013.05.0659]
 WANG Li-yan.Effects of Silicon on Salt Tolerance of Glycine soja Seedlings and Its Mechanism[J].Soybean Science,2013,32(02):659.[doi:10.11861/j.issn.1000-9841.2013.05.0659]
[5]陈丽丽,王明玖,何丽君,等.野生大豆ISSR体系的优化及其在远缘杂交后代鉴定中的利用[J].大豆科学,2013,32(04):459.[doi:10.11861/j.issn.1000-9841.2013.04.0459]
 CHEN Li-li,WANG Ming-jiu,HE Li-jun,et al.Optimization for ISSR Reaction System of Wild Soybean and Its Utilization in Distant Hybrid Identification[J].Soybean Science,2013,32(02):459.[doi:10.11861/j.issn.1000-9841.2013.04.0459]
[6]郑世英,萧蓓蕾,金桂芳.NaCl胁迫对野生大豆和栽培大豆叶绿素及光合特性的影响[J].大豆科学,2013,32(04):486.[doi:10.11861/j.issn.1000-9841.2013.04.0486]
 ZHENG Shi-ying,XIAO Bei-lei,JIN Gui-fang.Effect of NaCl Stress on Chlorophyll Content and Photosynthetic Characteristics of Glycine soja and Glycine max[J].Soybean Science,2013,32(02):486.[doi:10.11861/j.issn.1000-9841.2013.04.0486]
[7]徐艳平,胡翠美,张文会,等.干旱胁迫对野生大豆幼苗光合作用相关指标的影响[J].大豆科学,2013,32(03):341.[doi:10.11861/j.issn.1000-9841.2013.03.0341]
 XU Yan-ping,HU Cui-mei,ZHANG Wen-hui,et al.Effect of Simulated Drought Stress on Photosynthesis Related Indexes at Seedling Stage of Wild Soybeans[J].Soybean Science,2013,32(02):341.[doi:10.11861/j.issn.1000-9841.2013.03.0341]
[8]胡卫静,何丽君,何劲莉,等.NaCl胁迫对野生与栽培大豆杂交后代株系生理指标的影响[J].大豆科学,2013,32(03):349.[doi:10.11861/j.issn.1000-9841.2013.03.0349]
 HU Wei-jing,HE Li-jun,HE Jin-li,et al.Effects of NaCl Stress on Physiological Characters of Soybean Hybrids from Glycine max × Glycine soja[J].Soybean Science,2013,32(02):349.[doi:10.11861/j.issn.1000-9841.2013.03.0349]
[9]王 旻,梁 玉,王欣欣,等.即墨野生大豆主要成分及其营养价值分析[J].大豆科学,2013,32(03):355.[doi:10.11861/j.issn.1000-9841.2013.03.0355]
 WANG Min,LIANG Yu,WANG Xin-xin,et al.Assessment on Nutritional Compositions and Value of Jimo Wild Soybean[J].Soybean Science,2013,32(02):355.[doi:10.11861/j.issn.1000-9841.2013.03.0355]
[10]程鹏,徐鹏飞,范素杰,等.野生大豆接种大豆疫霉根腐病菌后过氧化物酶(POD)活性变化[J].大豆科学,2013,32(02):197.[doi:10.3969/j.issn.1000-9841.2013.02.013]
 CHENG Peng,XU Peng-fei,FAN Su-jie,et al.Response of POD Activity in Glycine soja ?Inoculated by Phytophthora sojae[J].Soybean Science,2013,32(02):197.[doi:10.3969/j.issn.1000-9841.2013.02.013]

备注/Memo

Foundation:Transgenic Breeding Program (2008ZX08004-003)

Biography:KAN Gui-zhen (1978-), female, PhD.Major in soybean molecular genetics and breeding. E-mail: kanguizhen@njau.edu.cn.
Corresponding author: YU De-yue (1965-), male, PhD, professor.Major in plant molecular genetics and breeding. E-mail: dyyu@njau.edu.cn.

更新日期/Last Update: 2015-06-07