WANG Jin-sheng,WU Jun-jiang,PU Guo-feng,et al.Evaluation of Phosphate-solubilizing Ability and Stability of Rhizobium Fredii in Various Soils[J].Soybean Science,2020,39(06):906-911.[doi:10.11861/j.issn.1000-9841.2020.06.0906]
不同土壤类型中大豆根瘤菌解磷能力及其稳定性评价
- Title:
- Evaluation of Phosphate-solubilizing Ability and Stability of Rhizobium Fredii in Various Soils
- Keywords:
- Rhizobium fredii; Heilongjiang Province; Phosphate-solubilizing ability; GGE-Biplot; Stability
- 文献标志码:
- A
- 摘要:
- 为准确评价大豆根瘤菌解磷能力在不同土壤环境中的稳定性和适应性,筛选在黑龙江省多种土壤类型中具有高效解磷能力的大豆根瘤菌,分析前期分离、鉴定获得的10株大豆根瘤菌菌株在不同土壤类型条件下的磷解能力,并采用GGE双标图法分析评价解磷能力的稳定性。结果表明:以黑土作为“磷溶出库”,接种菌株113-2、112-1、114-2、111-2、114-1和115-2的培养基上清液无机磷含量显著高于无接种对照处理,提高幅度为0.68%~7.02%;以草甸土作为“磷溶出库”,接种菌株112-1、113-2、114-2、115-2、114-1、111-2、113-1和111-1的培养基上清液无机磷含量显著高于对照处理,提高幅度为0.57%~8.25%;以黑钙土作为“磷溶出库”,接种不同根瘤菌处理的培养基上清液无机磷含量均显著高于对照处理,提高幅度为0.75%~7.0%;以白浆土作为“磷溶出库”,接种菌株112-1、113-2、114-2、111-2、115-1、114-2、111-1和112-2的培养基上清液无机磷含量显著高于对照处理,提高幅度为0.41%~14.8%;以盐碱土作为“磷溶出库”,接种菌株113-2、112-1、114-2、111-2、114-1、115-2和113-1的培养基上清液无机磷含量显著高于对照处理,提高幅度为0.47%~9.9%。以黑土、草甸土、黑钙土、白浆土和盐碱土作为“磷溶出库”接种处理的土壤有效磷含量较对照处理分别提高0.07%~21.53%、0.08%~38.82%、0.07%~25.94%、0.27%~17.40%和0.34%~34.71%。GGE双标图数学模型综合对比得出土壤磷活化能力强且稳定性较好的菌株为112-1、113-2和114-2。
- Abstract:
- In order to accurately evaluate the stability and adaptability of rhizobium fredii phosphate-solubilizing ability in different soil environment of Heilongjiang Province, this study analyzed the phosphate-solubilizing ability of 10 strains of rhizobia isolated from soybean in the pnrophase under different soil types, and evaluated the stability of phosphate solubilization ability with GGE biplot method. The results showed that the content of inorganic phosphorus in the supernatants of black soil inoculated strains 113-2,112-1,114-2,111-2,114-1 and 115-2 were significantly higher than that of uninoculated control by 0.68%-7.02%. The contents of inorganic phosphorus in the supernatants of meadow soil inoculated strains 112-1,113-2,114-2,115-2,114-1,111-2,113-1 and 111-1 were significantly higher than those of the control by 0.57%-8.25%. The content of inorganic phosphorus in the supernatants of chernozem soil inoculated different rhizobium strains were all significantly higher than that of the control by 0.75%-7.0%. The contents of inorganic phosphorus in the supernatants of albic soil inoculated strains 112-1, 113-2, 114-2, 111-2, 115-1,114-2,111-1 and 112-2 were significantly higher than those of the control by 0.41%-14.8%. The contents of inorganic phosphorus in the supernatants of saline-alkali soil inoculated strains 113-2, 112-1, 114-2, 111-2, 114-1, 115-2 and 113-1 were significantly higher than those of the control, with an increase of 0.47%-9.9%. The contents of inorganic phosphorus in the supernatant of saline soil inoculated with strains 112-1, 113-2, 114-2, 111-2, 115-1, 114-2, 111-1 and 112-2 were significantly higher than that of control by 0.41%-14.8%. The available phosphorus content of soils inoculated with black soil, meadow soil, chernozem soil, albic soil and saline-alkali soil as phosphorus leaching reservoir increased by 0.07%-21.53%, 0.08%-38.82%, 0.07%-25.94%, 0.27%-17.40% and 0.34%-34.71%, respectively. GGE two-plot mathematical model method was used to synthesize and compare the strains 112-1, 113-2 and 114-2 which had strong phosphorus activation ability and good stability.
参考文献/References:
[1]王艳, 李晓林, 张福锁. 不同基因型植物低磷胁迫适应机理的研究进展[J]. 生态农业研究, 2000, 8(4): 34-36. (Wang Y, Li X L, Zhang F S. Current research on suitable mecllanisms on different plant genotypes under phosphorous stress[J].Eco-agriculture Research, 2000, 8(4): 34-36.)[2]Pradhan N, Sukla L B. Solubilization of inorganic phosphates by fungi isolated from agriculture soil[J]. African Journal of Biotechnology, 2005, 5(10): 850-854.[3]程明芳, 何萍, 金继运. 我国主要作物磷肥利用率的研究进展[J].作物杂志, 2010(1): 12-14. (Cheng M F, He P, Jin J Y. Advance of phosphate recovery rate in Chinese main crops[J].Crops,2010(1):12-14.)[4]Antoun H A,Beauchamp C J, Goussard N, et al. Potential of rhizobium and bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: Effect on radishes (Raphanus sativus L.)[J]. Plant Soil,1998, 204: 57-67.[5]Zhang X T,Kang L H, Ma H B, et al. Selection of acacia rhizobium which have the ability to dissolve phosphorus[J]. Forest Research,2008,21(5): 619-624.[6]Whitelaw M A, Harden T J, Helyar K R. Phosphate solubilisation in solution culture by the soil fungus Penicillium radicum[J]. Soil Biology and Biochemistry, 1999, 31(5): 655-665.[7]张希涛, 康丽华, 马海宾. 具有解磷能力的相思根瘤菌的筛选[J].林业科学研究, 2008, 21 (5): 619-622. (Zhang X T, Kang L H, Ma H B. Screening of acacia rhizobia with phosphorus-solubilizing ability[J].Forest Research, 2008, 21(5): 619-622.)[8]Xie J.Screening for calcium phosphate solubilizing rhizobium legurninosarum[D]. Saskatoon: University of Saskatchewan, 2008:16-19.[9]Abril A,Zurdo-Pineiro J L, Peix A, et al. Solubilization of hosphate by a strain of Rhizobium leguminosarum bv. Trifolii isolated from Phaseolus vulgaris in EI Chaco Arido soil(Argentina)[J]. Developments in Plant and Soil Sciences,2007,102:135-138.[10]Whitelaw M A.Growth promotion of plants inoculated with phosphate-solubilizing fungi[J]. Advances in Agronomy, 1999, 69: 99-151.[11]Nahas E. Phosphate solubilizing microorganisms: Effect of carbon, nitrogen, and phosphorus sources[M]//Vela′zquez E, Rodr′guez-Barrueco C. First International Meeting on Microbial Phosphate Solubilization. Springer, 2007:111-115.[12]张亮, 黄建国.菜豆根瘤菌对土壤无机磷的活化释放作用[J].土壤学报, 2019, 49(5): 996-1002. (Zhang L, Huang J G. Effect of rhizobium phaseoli on mobilization and release of inorganic phosphorus in soil[J]. Acta Pedologica Sinica, 2019, 49(5): 996-1002.)[13]杨剑虹, 王成林, 代亨林. 土壤农化分析与环境监测[M]. 北京: 中国大地出版社, 2008. (Yang J H, Wang C L, Dai H L. Soil agro-chemistry analysis and environmental monitoring[M]. Beijing: Earth Press of China, 2008. )[14]李剑峰, 张淑卿, 杜建雄, 等. 解磷根瘤菌研究进展[J]. 生物技术, 2014(18): 11-13. (Li J F, Zhang S Q, Du J X, et al. Advances in the research on phosphorous rhizobia[J]. Biotechnology, 2014(18): 11-13.)[15]李剑峰, 张淑卿, 师尚礼, 等. 解磷根瘤菌液体培养基类型, 浓度及透气条件的比较[J].草原与草坪, 2010, 30(1): 28-32. (Li J F, Zhang S Q, Shi S L, et al.Ventilation conditions on phosphorus-dissoolving Rhizobia[J].Grassland and Turf, 2010, 30(1): 28-32.)
相似文献/References:
[1]孙梦阳,王 艳,武 林,等.黑龙江省主栽大豆品种脂肪含量分析及SSR分子标记辅助鉴定[J].大豆科学,2013,32(02):143.[doi:10.3969/j.issn.1000-9841.2013.02.002]
SUN Meng-yang,WANG Yan,WU Lin,et al.Analysis of Oil Content Underlying Major Soybean Cultivars of Heilongjiang Province and SSR Molecular Marker-assisted Identification[J].Soybean Science,2013,32(06):143.[doi:10.3969/j.issn.1000-9841.2013.02.002]
[2]王卫卫,关大伟,马鸣超,等.东北地区大豆根瘤菌遗传多样性与系统发育研究[J].大豆科学,2013,32(04):433.[doi:10.11861/j.issn.1000-9841.2013.04.0433]
WANG Wei-wei,GUAN Da-wei,MA Ming-chao,et al.Genetic Diversity and Phylogeny of Soybean Rhizobia Isolated from Northeast China[J].Soybean Science,2013,32(06):433.[doi:10.11861/j.issn.1000-9841.2013.04.0433]
[3]刘庆莉,王金生,刘丽君,等.大豆根瘤菌剂载体的选择及最佳施用浓度筛选[J].大豆科学,2014,33(02):207.[doi:10.11861/j.issn.1000-9841.2014.02.0207]
LIU Qingli,WANG Jinsheng,LIU Lijun,et al.Chosen of Soybean Rhizobia Carrier and Screening of the Best Concentration[J].Soybean Science,2014,33(06):207.[doi:10.11861/j.issn.1000-9841.2014.02.0207]
[4]薛晓昀,冯瑞华,关大伟,等.大豆根瘤菌与促生菌复合系筛选及机理研究[J].大豆科学,2011,30(04):613.[doi:10.11861/j.issn.1000-9841.2011.04.0613]
XUE Xiao-yun,FENG Rui-hua,GUAN Da-wei,et al.Screening and Analysis for Efficient Co-inoculation System of Soybean Rhizobia and Plant Growth-promoting Rhizobacteria[J].Soybean Science,2011,30(06):613.[doi:10.11861/j.issn.1000-9841.2011.04.0613]
[5]肖文丽,关大伟,李俊,等.采用gfp和rfp基因标记评价大豆根瘤菌竞争结瘤能力[J].大豆科学,2010,29(03):366.[doi:10.11861/j.issn.1000-9841.2010.03.0366]
XIAO Wen-li,GUAN Da-wei,LI Jun,et al.Evaluation on the Competitiveness of Strains of Soybean Rhizobia Marking with gfp and rfp Genes[J].Soybean Science,2010,29(06):366.[doi:10.11861/j.issn.1000-9841.2010.03.0366]
[6]姜翠兰,胡国华,丁俊杰,等.气象因子对黑龙江省大豆灰斑病发生的影响[J].大豆科学,2009,28(02):276.[doi:10.11861/j.issn.1000-9841.2009.02.0276]
JIANG Cui-lan,HU Guo-hua,DING Jun-jie,et al.Effect of Meteorological Factors on Frogeye Leafspot of Soybean in Heilongjiang Province[J].Soybean Science,2009,28(06):276.[doi:10.11861/j.issn.1000-9841.2009.02.0276]
[7]柏宇,关大伟,李力,等.耐高氮优良大豆根瘤菌株的筛选与鉴定[J].大豆科学,2014,33(06):861.[doi:10.11861/j.issn.1000-9841.2014.06.0861]
BAI Yu,GUAN Da-wei,LI Li,et al.Screening and Characterization of Superior Nitrogen-Tolerance Soybean Rhizobia[J].Soybean Science,2014,33(06):861.[doi:10.11861/j.issn.1000-9841.2014.06.0861]
[8]吴萍,李正鹏,何庆元,等.大豆根瘤菌AHM2B菌株培养条件的筛选与优化[J].大豆科学,2014,33(06):953.[doi:10.11861/j.issn.1000-9841.2014.06.0953]
WU Ping,LI Zheng-peng,HE Qing-yuan,et al.Screening and Optimization of the Culture Conditions for Soybean Rhizobium Strain AHM2B[J].Soybean Science,2014,33(06):953.[doi:10.11861/j.issn.1000-9841.2014.06.0953]
[9]郑伟,郭泰,王志新,等.开花期干旱对黑龙江省主栽大豆品种根部性状的影响[J].大豆科学,2015,34(06):987.[doi:10.11861/j.issn.1000-9841.2015.06.0987]
ZHENG Wei,GUO Tai,WANG Zhi-xin,et al.Effect of Flowering Period Drought on the Root Traits of Soybean Cultivars Main Cultivated in Heilongjiang Province[J].Soybean Science,2015,34(06):987.[doi:10.11861/j.issn.1000-9841.2015.06.0987]
[10]李玉影,刘双全,姬景红,等.黑龙江省不同农业生态区大豆平衡施肥效果研究[J].大豆科学,2015,34(06):1029.[doi:10.11861/j.issn.1000-9841.2015.06.1029]
LI Yu-ying,LIU Shuang-quan,JI Jing-hong,et al.Study on the Effect of Balanced Fertilization of Soybean in Different Agricultural Ecological Regions of Heilongjang Province[J].Soybean Science,2015,34(06):1029.[doi:10.11861/j.issn.1000-9841.2015.06.1029]
备注/Memo
收稿日期:2020-08-06