[1]刘瑶,谭克竹,陈月华,等.基于分段主成分分析和高光谱技术的大豆品种识别[J].大豆科学,2016,35(04):672-678.[doi:10.11861/j.issn.1000-9841.2016.04.0672]
 LIU Yao,TAN Ke-zhu,CHEN Yue-hua,et al.Variety Recognition of Soybeans Using Segmented Principal Component Analysisand Hyperspectral Technology[J].Soybean Science,2016,35(04):672-678.[doi:10.11861/j.issn.1000-9841.2016.04.0672]
点击复制

基于分段主成分分析和高光谱技术的大豆品种识别

参考文献/References:

[1] 李文霞,李柏云,薛红,等. 黑龙江省不同生态区大豆品种育种性状的主成分分析[J]. 大豆科学,2013,32( 6) : 731-734. ( LiW X,Li B Y,Xue H ,et al. Principal components analysis ofbreeding traits in various ecological regions in Heilongjiang province[J]. Soybean Science,2013,32( 6) : 731-734. )

[2] 洪庆红,李丹婷,郝朝运. 应用FTIR 直接测定法鉴定大豆的品种[J]. 光谱学与光谱分析,2005,25( 8) : 1246-1249. ( Hong QH,Li D T,Hao C Y. Identification of soybean varieties by directdetermination of FTIR spectrum[J]. Spectroscopy and Spectral Analysis,2005,25( 8) : 1246-1249. )
[3] 朱大洲,王坤,周光华,等. 单粒大豆的近红外光谱特征及品种鉴别研究[J]. 光谱学与光谱分析,2010,30 ( 12) : 3217-3221.( Zhu D Z,Wang K,Zhou G H, et al. The NIR spectra based varietydiscrimination for single soybean seed[J]. Spectroscopy andSpectral Analysis,2010,30( 12) : 3217-3221. )
[4] 杨冬风,朱洪德. 基于近红外透射光谱分析和BP 神经网络的大豆品种识别[J]. 大豆科学,2013,32( 2) : 249-253. ( Yang DF,Zhu H D. Recognition of soybean varieties based on near infraredtransmittance spectroscopy and BP neural network[J]. SoybeanScience,2013,32( 2) : 249-253. )
[5] 柴玉华,侯升飞,彭长禄. 基于高光谱图像技术的大豆分级识别方法研究[J]. 东北农业大学学报,2014,45 ( 4) : 107-112.( Chai Y H,Hou S F,Peng C L. Identification of different soybeangrades based on hyperspectral imagery[J]. Journal of NortheastAgricultural University,2014,45( 4) : 107-112. )
[6] Zhang X L,Liu F,He Y,et al. Application of hyperspectral imagingand chemometric calibrations for variety discrimination of678 大豆科学4 期maize seeds[J]. Sensors,2012,12( 12) : 17234-17246.
[7] 鲍一丹,陈纳,何勇,等. 近红外高光谱成像技术快速鉴别国产咖啡豆品种[J]. 光学精密工程,2015,23 ( 2 ) : 349-355.( Bao Y D,Chen N,He Y,et al. Rapid identification of coffeebean variety by near infrared hyperspectral imaging technology[J]. Optical Precision Engineering,2015,23( 2) : 349-355. )
[8] 杨仁杰,刘蓉,杨延荣,等. 用二维相关近红外谱和多维主成分分析判别掺杂牛奶[J]. 光学精密工程,2014,22 ( 9 ) :2352-2358. ( Yang R J,Liu R,Yang Y R,et al. Classification ofadulterated milk by two-dimensional correlation near-infrared spectroscopyand multi-way principal component analysis[J]. OpticalPrecision Engineering,2014,22( 9) : 2352-2358. )
[9] 王斌,薛建新,张淑娟. 基于高光谱成像技术的腐烂、病害梨枣检测[J]. 农业机械学报,2013,44( S1) : 205-209. ( Wang B,XueJ X,Zhang S J. Detection of decay and disease pear jujube basedon hyperspectral imaging technology[J]. Transactions of the ChineseSociety for Agricultural Machinery,2013,44( S1) : 205-209. )
[10] Siedliska A,Baranowski P,Mazurek W. Classification models ofbruise and cultivar detection on the basis of hyperspectral imagingdata[J]. Computers and Electronics in Agriculture,2014,106:66-74.
[11] Nakariyakul S,Casasent D P. Classification of internally damagedalmond nuts using hyperspectral imagery[J]. Journal of Food Engineering,2011,103( 1) : 62-67.
[12] Sakla W,Chan A, Ji J, et al. An SVDD-based algorithm for targetdetection in hyperspectral imagery[J]. Geoscience and RemoteSensing Letters, IEEE,2011,8( 2) : 384-388.
[13] 严衍禄,陈斌,朱大洲. 近红外光谱分析的原理、技术与应用[M]. 北京: 中国轻工业出版社,2013. ( Yan Y L,Chen B ,ZhuD Z. Near infrared spectroscopy-principles, technologies and applications[M]. Beijing: China Light Industry Press,2013. )
[14] Shahin M A,Symons S J. Detection of Fusarium damaged kernelsin Canada Western Red Spring wheat using visible /near-infraredhyperspectral imaging and principal component analysis[J]. Computersand Electronics in Agriculture,2011,75( 1) : 107-112.
[15] Jia X,Richards J A. Segmented principal components transformationfor efficient hyperspectral remote-sensing image display andclassification[J]. Geoscience and Remote Sensing,1999,37( 1) :538-542.
[16] Du Q,Zhu W,Yang H,et al. Segmented principal component analysisfor parallel compression of hyperspectral imagery[J]. Geoscienceand Remote Sensing Letters, IEEE,2009, 6 ( 4 ) :713-717.
[17] Borges J S,Marcal A R S,Dias J M B. Evaluation of feature extractionand reduction methods for hyperspectral images[C]/ /Proceedingsof the 26th EARSeL Symposium-New Developments andChallenges in Remote Sensing,2007: 255-264.
[18] Huang G B,Zhu Q Y,Siew C K. Extreme learning machine:Theory and applications[J]. Neurocomputing,2006,70 ( 1 ) :489-501.
[19] Breiman L. Random forests[J]. Machine Learning,2001,45( 1) : 5-32.
[20] Vidal M,Amigo J M. Pre-processing of hyperspectral images. Essentialsteps before image analysis[J]. Chemometrics and IntelligentLaboratory Systems,2012,117: 138-148.
[21] 朱启兵,冯朝丽,黄敏,等. 基于高光谱图像技术和SVDD 的玉米种子识别[J]. 光谱学与光谱分析,2013 ( 2 ) : 517-521.( Zhu Q B,Feng Z L,Huang M, et al. Maize seed identification usinghyperspectral imaging and SVDD algorithm[J]. Spectroscopyand Spectral Analysis,2013 ( 2) : 517-521. )
[22] 郭文川,王铭海,谷静思,等. 近红外光谱结合极限学习机识别贮藏期的损伤猕猴桃[J]. 光学精密工程,2013,21 ( 10) :2720-2727. ( Guo W C,Wang M H,Gu J S, et al. Identification ofbruised kiwifruits during storage by near infrared spectroscopy andextreme learning machine[J]. Optical Precision Engineering,2013,21( 10) : 2720-2727. )

相似文献/References:

[1]黄春燕,刘胜利,王登伟,等.大豆叶面积指数的高光谱估算模型研究[J].大豆科学,2008,27(02):228.[doi:10.11861/j.issn.1000-9841.2008.02.0228]
 HUANG Chun-yan,LIU Sheng-li,WANG Deng-wei,et al.Models for Estimating Soybean Leaf Area Index Using Hyperspectral Data[J].Soybean Science,2008,27(04):228.[doi:10.11861/j.issn.1000-9841.2008.02.0228]
[2]齐波,张宁,赵团结,等.长江中下游生态区大豆生长性状及产量的冠层高光谱偏最小二乘回归预测[J].大豆科学,2015,34(03):414.[doi:10.11861/j.issn.1000-9841.2015.03.0414]
 QI Bo,ZHANG Ning,ZHAO Tuan-jie,et al.Using Canopy Hyperspectral Reflectance to Predict Growth Traits and Seed Yield of Soybeans from Middle and Lower Yangtze Valleys through Partial Least Squares Regression[J].Soybean Science,2015,34(04):414.[doi:10.11861/j.issn.1000-9841.2015.03.0414]
[3]龚荣新,鲁向晖,张海娜,等.基于高光谱植被指数的大豆地上部生物量估算模型研究[J].大豆科学,2023,42(03):352.[doi:10.11861/j.issn.1000-9841.2023.03.0352]

备注/Memo

基金项目: 国家自然科学基金资助项目( 60802059) 黑龙江省自然科学基金重点项目( ZD201303) 。第一作者简介: 刘瑶( 1982-) ,女,博士,讲师,主要从事高光谱图像处理技术研究。E-mail: liuyao0904@163. com。通讯作者: 谢红( 1962-) ,女,教授,博导,主要从事信号与信息处理技术研究。E-mail: xiehong@ hrbeu. edu. cn。

更新日期/Last Update: 2016-08-23