LIU Yao,TAN Ke-zhu,CHEN Yue-hua,et al.Variety Recognition of Soybeans Using Segmented Principal Component Analysisand Hyperspectral Technology[J].Soybean Science,2016,35(04):672-678.[doi:10.11861/j.issn.1000-9841.2016.04.0672]
基于分段主成分分析和高光谱技术的大豆品种识别
- Title:
- Variety Recognition of Soybeans Using Segmented Principal Component Analysisand Hyperspectral Technology
- 分类号:
- TP391. 41; TP274. 5
- 文献标志码:
- A
- 摘要:
- 为了实现大豆品种的快速且无损鉴别,对大豆高光谱图像中的光谱信息进行研究分析。利用高光谱图像采集系统采集波长范围为400 ~ 1 000 nm 的6 类共660 粒大豆样本的高光谱图像,从每粒大豆样本的中心区域上提取感兴趣区域并以此区域的平均光谱信息代表此粒大豆的光谱信息。对光谱曲线进行多元散射校正( multiple scatteringcorrection,MSC) 后,根据相关系数矩阵图,将整个高光谱波段分解为3 个子分段,分别在每个子分段上做主成分分析( principal component analysis,PCA) ,提取1 ~ 20 个主成分作为光谱特征,利用极限学习机( extreme learning machine,ELM) 和随机森林( random forests,RF) 模型进行大豆品种识别。结果表明: 在第二分段( 510. 6 ~ 685. 4 nm) 进行PCA变换,识别效果优于全波段PCA 变换。因此,应用分段PCA 变换和高光谱技术对大豆品种进行无损识别是可行的。
- Abstract:
- In order to realize rapid nondestructive recognition for soybeans varieties, spectral information of hyperspectral imagefor soybeans is analyzed. Hyperspectral images for 660 soybeans including 6 varieties from 400 to 1 000 nm are acquired byhyperspectral image system. The interested region for each sample is extracted and average spectral information is obtained.Spectrum curve is conducted multiple scattering correction ( MSC) . According to the correlation coefficient matrix,the entirehyperspectral bands are segmented into three highly relevant sub-segments. Principal component analysis ( PCA) is respectivelyused in each sub-segments. The first twenty principal components are extracted as spectral features of soybean samples.Identification model is developed using Extreme Learning Machine ( ELM) and Random Forests ( RF) models. Experimentalresults indicate that the identification results using PCA in the second sub-segment ( 510. 6 - 685. 4 nm) is outperform than usingPCA in the entire bands. Nondestructive recognition and classification for soybean varieties using segmented PCA and hyperspectraltechnology is effective.
参考文献/References:
[1] 李文霞,李柏云,薛红,等. 黑龙江省不同生态区大豆品种育种性状的主成分分析[J]. 大豆科学,2013,32( 6) : 731-734. ( LiW X,Li B Y,Xue H ,et al. Principal components analysis ofbreeding traits in various ecological regions in Heilongjiang province[J]. Soybean Science,2013,32( 6) : 731-734. )
相似文献/References:
[1]黄春燕,刘胜利,王登伟,等.大豆叶面积指数的高光谱估算模型研究[J].大豆科学,2008,27(02):228.[doi:10.11861/j.issn.1000-9841.2008.02.0228]
HUANG Chun-yan,LIU Sheng-li,WANG Deng-wei,et al.Models for Estimating Soybean Leaf Area Index Using Hyperspectral Data[J].Soybean Science,2008,27(04):228.[doi:10.11861/j.issn.1000-9841.2008.02.0228]
[2]齐波,张宁,赵团结,等.长江中下游生态区大豆生长性状及产量的冠层高光谱偏最小二乘回归预测[J].大豆科学,2015,34(03):414.[doi:10.11861/j.issn.1000-9841.2015.03.0414]
QI Bo,ZHANG Ning,ZHAO Tuan-jie,et al.Using Canopy Hyperspectral Reflectance to Predict Growth Traits and Seed Yield of Soybeans from Middle and Lower Yangtze Valleys through Partial Least Squares Regression[J].Soybean Science,2015,34(04):414.[doi:10.11861/j.issn.1000-9841.2015.03.0414]
[3]龚荣新,鲁向晖,张海娜,等.基于高光谱植被指数的大豆地上部生物量估算模型研究[J].大豆科学,2023,42(03):352.[doi:10.11861/j.issn.1000-9841.2023.03.0352]
备注/Memo
基金项目: 国家自然科学基金资助项目( 60802059) 黑龙江省自然科学基金重点项目( ZD201303) 。第一作者简介: 刘瑶( 1982-) ,女,博士,讲师,主要从事高光谱图像处理技术研究。E-mail: liuyao0904@163. com。通讯作者: 谢红( 1962-) ,女,教授,博导,主要从事信号与信息处理技术研究。E-mail: xiehong@ hrbeu. edu. cn。