QIAN Shao-fang,CHEN Li-mei,CHEN Xuan-qin,et al.Physiological Properties of Soybean(Glycine max)Tamba and Yunnanxiaoheidou under Acid Soil Stress[J].Soybean Science,2011,30(06):941-945.[doi:10.11861/j.issn.1000-9841.2011.06.0941]
酸性土壤胁迫下丹波黑大豆和云南小黑豆生理特性研究
- Title:
- Physiological Properties of Soybean(Glycine max)Tamba and Yunnanxiaoheidou under Acid Soil Stress
- 文章编号:
- 1000-9841(2011)06-0941-05
- Keywords:
- Black soybean(Glycine max); Tamba; Yunnanxiaoheidou; Acid soil stress; Physiological property
- 分类号:
- S565.1
- 文献标志码:
- A
- 摘要:
- 以酸性土壤耐受能力差异明显的2个大豆品种丹波黑大豆和云南小黑豆为材料,分别在pH 4.55的黄壤、pH 5.60的红壤和pH 7.14的正常土壤上盆栽种植,于出苗后50 d观察生长状况并测定根和叶的主要生理指标,研究大豆对酸性土壤胁迫的耐受生理机理。结果表明:在弱酸和强酸性土壤上丹波黑大豆都能形成根瘤、生长良好,而云南小黑豆则不能形成根瘤、长势差。2个黑豆根中产生的活性氧簇(ROS)主要通过提高超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性来清除,其中云南小黑豆根中这些酶活性明显提高,受酸性土壤胁迫影响较大; 2个黑豆叶中则产生大量可溶性糖、脯氨酸(Pro)、丙二醛(MDA)、蛋白质羰基(PC)和过氧化氢(H2O2)来维持较低水平的渗透压与膜脂过氧化水平以提高对酸性土壤胁迫的耐受能力。结果证明丹波黑大豆耐酸性土壤胁迫能力明显强于云南小黑豆。
- Abstract:
- The acid tolerance mechanism of the soybean was studied using two black soybean(Glycine max)cultivars Tamba and Yunnanxiaoheidou,both of which had significant differences in acid soil tolerance.Soybeans were pot planted in greenhouse with yellow soil(pH 4.55),red soil(pH 5.60)and normal soil(pH 7.14).The main physiological indicators of the roots and leaves were measured 50 days later after seedling.The results showed that Tamba grew well in three kinds of soil with nodules while Yunnanxiaoheidou grew badly without nodules in yellow and red soil.Also the enzyme activities of superoxide dismutase(SOD),peroxidase(POD)and catalase(CAT)were all increased in roots of both cultivars when grown in yellow and red soil,but the former varied little,which indicated that the reactive oxygen species(ROS)produced from the root were cleavaged by these three enzymes.Meanwhile,the soluble sugars,proline(Pro),malondialdehyde(MDA),protein carbony(PC)and H2O2which could form low levels of both osmotic pressure and lipid peroxidation level and then were responsible for their acid stress tolerance,were abundant in the leaves of both soybeans.These results suggest that the acid soil stress tolerance of Tamba is superior to Yunnanxiaoheidou.
参考文献/References:
[1]熊毅,李庆逵.中国土壤[M].北京:科学出版社,1987:39.(Xiong Y,Li Q K.Chinese soil[M].Beijing:Science Press,1987:39.) [2]王奇峰,易琼,李昆志,等.铝胁迫下柱花草SSH文库构建及表达序列标签分析[J].植物学报,2010,45(6):679-688.(Wang Q F,Yi Q,Li K Z,et al.Construction of a suppression subtractive hybrdization library for Stylosanthes guianensis?under aluminum stress and expressed sequence tag analysis[J].Chinese Bulletin of Botany,2010,45(6):679-688.) [3]许玉凤,曹敏建,王文元,等.植物耐铝毒害的研究进展[J].沈阳农业大学学报,2002,33(6):452-455.(Xu Y F,Cao M J,Wang W Y,et al.Advance in studies on aluminum toxicity and plant resistance[J].Journal of Shenyang Agricultural University,2002,33(6):452-455.) [4]Pellet D M,Papernik L A,Kochian L V.Multiple aluminum-resistance mechanisms in wheat(roles of root apical phosphate and malate exudation)[J].Plant Physiology,1996,112:591-597. [5]Yang Z M,Horst W J,Matsumoto H,et a1.Aluminium tolerance is achieved by exudation of citric acid from roots of soybean(Glycine max)[J].Physiologia Plantarum,2000,110(1):72-77. [6]胡蕾,应小芳,刘鹏,等.铝胁迫对大豆生理特性的影响[J].土壤肥料,2004(2):9-11.(Hu L,Ying X F,Liu P,et a1.The research of the effects of aluminum stress on physiological characteristics of soybean[J].Soils and Fertilizers,2004(2):9-11.) [7]Silva I R,Smyth T J,Raper C D,et al.Differential aluminum tolerance in soybean:An evaluation of the role of organic acids[J].Plant Physiology,2001,112(2):200-210. [8]Yan X L,Liao H,Trull M C,et al.Induction of a major leaf acid phosphatase does not confer adaptation to low phosphorus availability in common bean[J].Plant Physiology,2001,125(4):1901-1911. [9]莫丙波,沈春鹏,于智卫,等.铝对大豆根柠檬酸合成和分泌的影响[J].生态环境学报,2009,18:1037-1041.(Mo B B,Shen C P,Yu Z W,et al.Effect of aluminum on synthesis and secretion of citrate in soybean roots[J].Ecology and Environmental Sciences,2009,18:1037-1041.) [10]王奇峰.提高植物耐铝能力遗传操作方法的研究及豆科植物铝响应基因的鉴定[D].昆明:昆明理工大学,2010.(Wang Q F.The development of genetic manipulation strategy to enhance Al-tolerance in plants and identification of Al-responsive genes in legumes[D].Kunming:Kunming University of Science and Technology,2010.) [11]俞慧娜,刘鹏,徐根娣,等.铝胁迫下大豆根尖细胞铝的微区分布与耐铝性分析[J].作物学报,2009,35(4):695-703.(Yu H N,Liu P,Xu G D,et al.Distribution of Al3+ in subcellular structure of root tips cells and aluminum tolerance in soybean[J].Acta Agronomica Sinica,2009,35(4):695-703.) [12]张志良,瞿伟菁.植物生理学实验指导(第三版)[M].北京:高等教育出版社,2003.(Zhang Z L,Qu W J.Guidance of plant physiology experiments(The Third Edition)[M].Beijing:Higher Education Press,2003.) [13]刘永军,杨晓玲,郭守华.生理生化实验指导[M].北京:中国农业出版社,2001.(Liu Y J,Yang X L,Guo S H.Guidance of physiological and biochemical experiments[M].Beijing:China Agriculture Press,2001.) [14]段丽菊,刘英帅,朱燕,等.DNPH比色法:一种简单的蛋白质羰基含量测定方法[J].毒理学杂志,2005,19(4):320-322.(Duan L J,Liu Y S,Zhu Y,et al.DNPH colorimetry assay:A simple method for determination of protein carbonyl[J].Journal of Health Toxicology,2005,19(4):320-322.) [15]李忠光,宋玉泉,龚明.二甲酚橙法用于测定植物组织中的过氧化氢[J].云南师范大学学报,2007,27(3):50-54.(Li Z G,Song Y Q,Gong M.Xylenol orange method used for the measurement of hydrogen peroxide in plant tissue[J].Journal of Yunnan Normal University,2007,27(3):50-54.) [16]Acbi H.Catalase in vitro[J].Methods in Enzymology,1984,105:121-126. [17]Matamoros M A,Dalton D A,Ramos J,et al.Biochemistry and molecular biology of antioxidants in the rhizobia-legume symbiosis[J].Plant Physiology,2003,133(10):499-509. [18]Alscher R G,Donahue J H,Cramer C L.Reactive oxygen species and antioxidants:relationships in green cells[J].Physiology Plantarum,1997,100(2):224-233. [19]Bolwell G P,Bindschedler L V,Blee K A,et a1.The apoplastic oxidative burst in response to biotic stress in plants:a three-component system[J].Journal of Experimental Botany,2002,372(53):1367-1376. [20]Schopfer P,Plachy C,Frahry G.Release of reactive oxygen intermediates(superoxide radicals,hydrogen peroxide,and hydroxyl radicals)and peroxidase in germinating radish seeds controlled by light,gibberellin,and abscisic acid[J].Plant Physiology,2001,125(4):1591-1602. [21]Boscolo P R,Menossi M,Jorge R A.Aluminum-induced oxidative stress in maize[J].Phytochemistry,2003,62(2):181-189. [22]Hossain M A,Hossain A K M Z,Kihara T,et al.Aluminum-induced lipid peroxidation and lignin deposition are associated with an increase in H2O2 generation in wheat seedlings[J].Soil Science and Plant Nutrition,2005,51(2):223-230. [23]Tsugane K,Niwa Y,Ohba Y,et al.A recessive Arabidopsis?mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification[J].Plant Cell,1999,11(7):1195-1206. [24]Molassiotis A,Sotiropoulos T,Tanou G,et al.Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM 9(Malus domestica Borkh)[J].Environmental and Experimental Botany,2006,56(1):54-62. [25]张争艳.大豆对铝胁迫响应的研究[D].金华:浙江师范大学,2008.(Zhang Z Y.Studies on response of soybean to aluminum toxicity[D].Jinhua:Zhejiang Normal University,2008.) [26]李荣峰,蔡妙珍,刘鹏,等.边缘细胞对大豆根尖铝毒害的缓解效应[J].作物学报,2008,34(1):318-325.(Li R F,Cai M Z,Liu P,et al.Border cells alleviating aluminum toxicity in soybean root tips[J].Acta Agronomica Sinica,2008,34(1):318-325.)
相似文献/References:
[1]王 平,陈 奇,陈东杰,等.外源添加IAA对铝胁迫下黑大豆根系生长的影响[J].大豆科学,2013,32(05):650.[doi:10.11861/j.issn.1000-9841.2013.05.0650]
WANG Ping,CHEN Qi,CHEN Dong-jie,et al.Effect of Exogenous IAA on Root Growth of Black Soybean under Aluminum Stress[J].Soybean Science,2013,32(06):650.[doi:10.11861/j.issn.1000-9841.2013.05.0650]
[2]易 嘉,郭传龙,武孔焕,等.壳梭孢素对铝敏感型黑大豆铝耐受性的影响[J].大豆科学,2014,33(03):389.[doi:10.11861/j.issn.1000-9841.2014.03.0389]
YI Jia,GUO Chuan-long,WU Kong-huan,et al.Effects of Fusicoccin on Aluminum Tolerance in Alsensitive Black Soybean[J].Soybean Science,2014,33(06):389.[doi:10.11861/j.issn.1000-9841.2014.03.0389]
[3]孟 君,谢银军.不同预处理方法对黑大豆中微量元素含量测定的影响[J].大豆科学,2012,31(04):645.[doi:10.3969/j.issn.1000-9841.2012.04.027]
MENG Jun,XIE Yin-jun.Impact on Determination of Trace Element Using Different Pretreatment Methods in Black Soybeans[J].Soybean Science,2012,31(06):645.[doi:10.3969/j.issn.1000-9841.2012.04.027]
[4]王闻闻,陈宣钦,陈 奇,等.外源SA诱导黑大豆根系柠檬酸分泌缓解Al毒害[J].大豆科学,2014,33(04):507.[doi:10.11861/j.issn.1000-9841.2014.04.0507]
WANG Wen-wen,CHEN Xuan-qin,CHEN Qi,et al.Exogenous SA Alleviated Al Toxicity by Inducing Citric Acid Exudation in Black Soybean Roots[J].Soybean Science,2014,33(06):507.[doi:10.11861/j.issn.1000-9841.2014.04.0507]
[5]王瑾,杨柏崇,吕莹,等.β-伴大豆球蛋白酶解物抑制致病菌粘附Caco-2细胞[J].大豆科学,2008,27(05):845.[doi:10.11861/j.issn.1000-9841.2008.05.0845]
WANG Jin,YANG Bai-chong,LU Ying,et al.Inhibition of Adhesion of in Vitro Hydrolysate of β-conglycinin to Caco-2 Cell by Enteropathogens[J].Soybean Science,2008,27(06):845.[doi:10.11861/j.issn.1000-9841.2008.05.0845]
[6]庞晓璐,刘昂,陈东杰,等.PEG模拟干旱胁迫对黑大豆硝态氮吸收和根尖质膜ATP酶活性的影响[J].大豆科学,2014,33(05):674.[doi:10.11861/j.issn.1000-9841.2014.05.0674]
PANG Xiao-lu,LIU Ang,CHEN Dong-jie,et al.Effect of PEG Simulated Drought Stress on Nitrate Uptake and Root Tip Plasma Membrane H+-ATP Activity in Black Soybean[J].Soybean Science,2014,33(06):674.[doi:10.11861/j.issn.1000-9841.2014.05.0674]
[7]陈东杰,王平,庞晓璐,等.铝胁迫下不同耐铝性黑大豆硝态氮吸收机理研究[J].大豆科学,2014,33(06):870.[doi:10.11861/j.issn.1000-9841.2014.06.0870]
CHEN Dong-jie,WANG Ping,Pang Xiao-lu,et al.Study on the Mechanism of NO-3Uptake by Different Al-tolerance Black Soybean under Al Stress[J].Soybean Science,2014,33(06):870.[doi:10.11861/j.issn.1000-9841.2014.06.0870]
[8]龙伟,靳瑾,沈秀,等.新体系评价东北黑大豆的营养健康功效[J].大豆科学,2014,33(06):915.[doi:10.11861/j.issn.1000-9841.2014.06.0918]
LONG Wei,JIN Jin,SHEN Xiu,et al.Evaluation on Nutritional and Healthy Effects of Northeast Black Soybean by Using Novel System[J].Soybean Science,2014,33(06):915.[doi:10.11861/j.issn.1000-9841.2014.06.0918]
备注/Memo
基金项目:国家重点基础研究发展计划(973计划)项目资助(2007CB108901);云南省中青年学术技术带头人后备人才培养基金资助项目(2006PY01-10)。