MIAO Shu-jie,LIU Xiao-bing.Molecular Physiology of Nodulation and Nitrogen Fixation in Soybean[J].Soybean Science,2010,29(02):319-324.[doi:10.11861/j.issn.1000-9841.2010.02.0319]
大豆结瘤固氮的分子生理研究
- Title:
- Molecular Physiology of Nodulation and Nitrogen Fixation in Soybean
- 文章编号:
- 1000-9841(2010)02-0319-06
- 分类号:
- S565.1
- 文献标志码:
- A
- 摘要:
- 有关豆科作物共生固氮的研究已有170 a的历史。而豆科结瘤固氮的分子生理研究,仅仅是最近30 a的事情。从影响大豆结瘤固氮的生理因子角度,评述了豆科作物的结瘤自动调控机制,进一步在分子水平上阐述了生长素、硝态氮、黄酮类等生理调控物质对大豆结瘤固氮的影响。生长素调节根瘤菌侵染位点和根瘤形成后的生长;可通过控制结瘤的角度来减少土壤硝态氮对大豆结瘤固氮能力的抑制;黄酮类物质在根瘤发育和结瘤基因诱导中起重要作用;乙烯抑制结瘤信号的前期过程,调整根瘤形成的空间分布。详细、系统地从作物-微生物之间关系出发,研究引起豆科作物根瘤形成和固氮系统的整体信号传导、蛋白和代谢过程,是未来大豆共生固氮分子生理研究应该注重的方向。
- Abstract:
- Research on symbiotic nitrogen fixation in legumes has been conducted for 170 years, while the aspects of molecular physiology on nodulation and nitrogen fixation of legumes were only investigated in the last 30 years. This review discussed the autoregulation of nodulation from the physiological perspectives and analyzed the effects of auxin, nitrate nitrogen, and physiological active substance like isoflavones on nodulation at molecular level. Auxin regulates the site of rhizobia infection and nodule development. The inhibition of nitrate nitrogen on nodulation and nitrogen fixation can be reduced by adjusting nodulation. Isoflavones play a key role in nodule growth and nod-induced genes. Ethylene inhibits early process of nodulation signal and regulates the distribution of nodules. Further research should focus on the process of signal transduction, protein and metabolism from the relationship between crop and microorganism.
参考文献/References:
[1]Cheng Q. Perspectives in biological nitrogen fixation research [J]. Journal of Integrative Plant Biology, 2008, 50(7): 786-798. [2]Caetano-Anoll′es G, Gresshoff P M. Plant genetic control of nodulation [J]. Annual Review of Microbiology, 1991, 45: 345-382. [3]Oka-Kira E, Kawaguchi M. Long-distance signaling to control root nodule number [J]. Current Opinion in Plant Biology, 2006, 9: 496-502. [4]Buazs D M, Gresshoff P M. Short- and long-distance control of root development by LjHAR1 during the juvenile stage of Lotus japopnicus [J]. Journal Plant Physiology, 2007, 164: 452-459. [5]Kosslak R M, Bohlool B B. Suppression of nodule development of one side of a split-root system of soybeans caused by prior inoculation of the other side [J]. Plant Physiology, 1984, 75: 125-130. [6]Nutman P S. Studies on the physiology of nodule formation III. Experiments on the excision of root-tips and nodules [J]. Annals of Botany, 1952, 16: 80-102. [7]Calvert H E, Pence M K, Pierce M, et al. Anatomical analysis of the development and distribution of Rhizobium infection in soybean roots [J]. Candian Journal of Botany, 1984, 62: 2375-2384. [8]Mathews A, Carroll B J, Gresshoff P M. Develpoment of Bradyrbizobium infections in a supernodulating and non-nodulating mutant of soybean (Glycine max(L.) Merr) [J]. Protoplasma, 1989, 150: 40-47. [9]Searle I R, Men A E, Laniya T S, et al. Long-distance signaling in nodulation directed by a calvata-like receptor kinase [J]. Science, 2003, 299: 109-112. [10]Krusell L, Madsen L H, Sato S, et al. Shoot control of root development and nodulation is mediated by a receptor-like kinase [J]. Nature, 2002, 420: 422-426. [11]黄志宏, 吕柳新. 微生物与植物共生结瘤固氮的分子遗传学研究进展[J]. 福建农林大学学报, 2002(81): 67-72. (Huang Z H, Lu L X. Advances in molecular genetics of symbiotic nitrogen-fixation in root nodules [J]. Journal of Fujian Agriculture and Forestry University (Natural) Science Edition, 2002(81): 67-72.) [12]Delves A V, Mathews A, Day D A, et al. Regulation of the soybean-Rhizobium nodule symbiosis by shoot and root factors [J]. Plant Physiology, 1986, 82: 588-590. [13]Nishimura R, Hayashi M, Wu G J, et al. HAR1 mediates systemic regulation of symbiotic organ development [J]. Nature, 2002, 420: 426-429. [14]Ito S, Ohtake N, Sueyoshi K, et al. Characteristics of initial growth of hypernodulation soybean mutants, NOD1-3, NOD2-4 and NOD3-7, affected by inoculation of bradyrhizobia and nitrate supply [J]. Soil Science Plant Nutrition, 2007, 53: 66-71. [15]Ito S, Kato T, Ohtake N, et al. The autoregulation of nodulation mechanism is related to leaf development [J]. Plant Cell Physiology, 2008, 49: 121-125. [16]Beveridge C A, Mathesius U, Rose R J, et al. Common regulatory themes in meristem development and whole-plant homeostasis [J]. Current Opinion in Plant Biology, 2007, 10: 44-51. [17]Bauer W D. Infection of legumes by rhizobia [J]. Annual Review of Plant Physiology, 1981, 32: 407-449. [18]Ito S, Ohtake N, Sueyoshi K, et al. Allocation of photosymthetic products in soybean during the early stages of nodule formation [J]. Soil Science Plant Nutrition, 2006, 52: 438-443. [19]Pacios-Bras C, Schlaman H R M, Boot K, et al. Auxin distribution in Lotus japonicus during root nodule development [J]. Plant Molecular Biology, 2003, 52: 1169-1180. [20]Kijne J W. The Rhizobium infection process [M]//Stacey G,Burris R, Evans H. Biological Nitrogen Fixation . New York, London: Chapman & Hall, 1992: 349-398. [21]Spaink H P. Root nodulation and infection factors produced by rhizobial bacteria [J]. Annual Review Microbiology, 2000, 54: 257-288. [22]Mathesius U, Schlaman H R M,Spaink H P,et al. Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides [J]. Plant Journal, 1998, 14: 23-34. [23]Mathesius U. Flavonoids induced in cells undergoing nodule organogenesis in white clover are regulators of auxin breakdown by peroxidase [J]. Journal of Experimental Botany, 2001, 52: 419-426. [24]Rinhardt D, Mandel T, Kuhlemeier C. Auxin regulates the initiation and radial position of plant lateral organs [J]. Plant Cell, 2000, 12: 507-518. [25]Hagen G, Martin G, Li Y, et al. Auxin-induced expression on the soybean GH3 promoter in transgenic tobacco plants [J]. Plant Molecular Biology, 1991, 17: 567-579. [26]Larkin P J, Gibson J M, Mathesius U, et al. Transgenic white clover. Studies with the auxin-responsive promoter, GH3, in root gracitropism and lateral root development [J]. Transgenic Research, 1996, 5: 325-335. [27]Li Y, Wu Y H, Hagen G, et al. Expression of the auxin-inducible GH3 promoter/GUS fusion gene as a useful molecular maker for suxin physiology [J]. Plant Cell Physiology, 1999, 40: 675-682. [28]Lohar D P, VandenBosch K A. Grafting between model legumes demonstrates roles for root and shoots in determining nodule type and host/rhizobia specificity [J]. Journal of Experimental Botany, 2005, 56: 1643-1650. [29]Gewaahoff P M. Molecular genetic analysis of nodulation genes in soybean [J]. Plant Breeding Reviews, 1993, 11: 275-318. [30]Van N G,Ross J J, Reid J B, et al. Defective long-distance auxin transport regulation in the Medicago truncatula super numeric nodules mutant [J]. Plant Physiology, 2006, 140: 1494-1506. [31]Pacios B C, Alberich J M, Wijfjes A H M, et al. A Lotus japonicus nodulation system based on heterologous expression of the fucosyl transferase NodZ and the acetyl transferase NolL in Rhizobium leguminosarus [J]. Molecular Plant-Microbe Interact, 2000, 13: 475-479.
相似文献/References:
[1]刘 薇,赵振芳,冯永君,等.植物激素在豆科植物根瘤形成和发育过程中的调控作用[J].大豆科学,2013,32(02):262.[doi:10.3969/j.issn.1000-9841.2013.02.028]
LIU Wei,ZHAO Zhen-fang,FENG Yong-jun,et al.Regulation of Plant Hormones on the Formation and Development of Legumes Root Nodules[J].Soybean Science,2013,32(02):262.[doi:10.3969/j.issn.1000-9841.2013.02.028]
[2]刘庆莉,王金生,刘丽君,等.大豆根瘤菌剂载体的选择及最佳施用浓度筛选[J].大豆科学,2014,33(02):207.[doi:10.11861/j.issn.1000-9841.2014.02.0207]
LIU Qingli,WANG Jinsheng,LIU Lijun,et al.Chosen of Soybean Rhizobia Carrier and Screening of the Best Concentration[J].Soybean Science,2014,33(02):207.[doi:10.11861/j.issn.1000-9841.2014.02.0207]
[3]寸植贤,周志刚,何霞红,等.氮、磷肥用量对大豆结瘤和生长的调节[J].大豆科学,2014,33(02):215.[doi:10.11861/j.issn.1000-9841.2014.02.0215]
CUN Zhixian,ZHOU Zhigang,HE Xiahong,et al.Regulation of Nitrogen and Phosphorus Fertilizer Dosage on Nodulation and Growth of Soybean[J].Soybean Science,2014,33(02):215.[doi:10.11861/j.issn.1000-9841.2014.02.0215]
[4]石 海,苗淑杰,刘居东,等.施氮对结瘤和非结瘤近等位基因大豆生长和固氮性状的影响[J].大豆科学,2012,31(06):961.[doi:10.3969/j.issn.1000-9841.2012.06.022]
SHI Hai,MIAO Shu-jie,LIU Ju-dong,et al.Effects of Nitrogen Application on Growth and Nitrogen Fixation in Nodulation and Non-nodulation Soybean Isolines[J].Soybean Science,2012,31(02):961.[doi:10.3969/j.issn.1000-9841.2012.06.022]
[5]沈鸣,陈受宜,张劲松.乙烯对豆科植物生长发育和根瘤形成的影响[J].大豆科学,2016,35(02):220.[doi:10.11861/j.issn.1000-9841.2016.02.0330]
SHEN Ming,CHEN Shou-yi,ZHANG Jin-song.Regulation of Ethylene on Plant Growth, Development and Nodulation in Legumes[J].Soybean Science,2016,35(02):220.[doi:10.11861/j.issn.1000-9841.2016.02.0330]
[6]甘银波 涂学文 田任久.大豆的最佳氮肥施用时期研究[J].大豆科学,1998,17(04):287.[doi:10.11861/j.issn.1000-9841.1998.04.0287]
Gan Yinbo Tu Xuew enTia n Renjiu.STUDY ON OPTIMUM TIMING OF NITROGEN APPLICATION ON SOYBEAN[J].Soybean Science,1998,17(02):287.[doi:10.11861/j.issn.1000-9841.1998.04.0287]
[7]丁洪,郭庆元,张学江.氮肥对大豆不同类型品种结瘤固氮影响的差异性研究[J].大豆科学,1994,13(03):274.[doi:10.11861/j.issn.1000-9841.1994.03.0274]
[J].Soybean Science,1994,13(02):274.[doi:10.11861/j.issn.1000-9841.1994.03.0274]
[8]王志莉,刘薇,吴存祥,等.植物信号分子对大豆开花与结瘤的协同调控[J].大豆科学,2017,36(02):315.[doi:10.11861/j.issn.1000-9841.2017.02.0315]
WANG Zhili,LIU Wei,WU Cunxiang,et al.Regulation of Plant Signal Molecules on the Processes of Flowering and Nodulation in Soybean [Glycine max(L) Merr][J].Soybean Science,2017,36(02):315.[doi:10.11861/j.issn.1000-9841.2017.02.0315]
[9]安琦,殷博,张介驰,等.外源类黄酮对大豆根瘤菌趋化性与结瘤效果的影响[J].大豆科学,2017,36(06):900.[doi:10.11861/j.issn.1000-9841.2017.06.0900]
AN Qi,YIN Bo,ZHANG Jie-chi,et al.The Chemotaxis and Nodulation Effect of Soybean Rhizobium on Exogenous Flavonoids[J].Soybean Science,2017,36(02):900.[doi:10.11861/j.issn.1000-9841.2017.06.0900]
[10]胥雅馨,徐玥,李玲,等.氮肥与根瘤菌配施对南疆春大豆结瘤和生长的影响[J].大豆科学,2021,40(02):241.[doi:10.11861/j.issn.1000-9841.2021.02.0241]
XU Ya-xin,XU Yue,LI Ling,et al.Effect of Nitrogen Fertilizer and Rhizobium Inoculation on Nodulation and Growth of Southern Xinjiang Spring Soybean[J].Soybean Science,2021,40(02):241.[doi:10.11861/j.issn.1000-9841.2021.02.0241]
备注/Memo
基金项目:中国科学院东北地理与农业生态研究所青年博士基金资助项目;黑龙江省杰出青年科学基金资助项目(JC200617)。