GAO Rong-jing,HUANG Hong,JIANG Ning,et al.Improvement Effects of Soybean Isoflavones on Lipopolysaccharide-Induced Depression-Like Behavior in Mice[J].Soybean Science,2021,40(04):539-545.[doi:10.11861/j.issn.1000-9841.2021.04.0539]
大豆异黄酮对脂多糖诱导小鼠抑郁样行为的改善作用研究
- Title:
- Improvement Effects of Soybean Isoflavones on Lipopolysaccharide-Induced Depression-Like Behavior in Mice
- Keywords:
- Soybean isoflavones; Lipopolysaccharide; Anti-depression; Inflammatory reaction; Tryptophan metabolism
- 文献标志码:
- A
- 摘要:
- 为研究大豆异黄酮对脂多糖诱导小鼠抑郁样行为的改善作用,将60只SPF级C57BL/6J雄性小鼠按体重随机分为6组,每组10只,即空白组(Control)、模型组(LPS)、SI低剂量组(10 mg·kg-1)、SI中剂量组(20 mg·kg-1)、SI高剂量组(40 mg·kg-1)和阳性药阿米替林组(10 mg·kg-1)。预防给药14 d后,首先通过空场试验观察小鼠的自主活动情况,然后采用单次腹腔注射脂多糖(1 mg·kg-1)的方法建立抑郁小鼠模型,并于LPS注射24 h后通过糖水偏爱和悬尾试验对小鼠的抑郁样行为进行评价,采用酶联免疫吸附法(ELISA)测定小鼠皮层中促炎细胞因子白介素6(IL-6)、白介素1β(IL-1β)、肿瘤坏死因子α(TNF-α)及色氨酸代谢产物犬尿氨酸(kynurenine,KYN)、5-羟色胺(5-hydroxytryptamine,5-HT)的含量。结果表明:大豆异黄酮给药后不影响小鼠的自主活动能力;与空白组相比,LPS模型组小鼠的糖水偏爱指数显著下降而悬尾不动时间显著延长,表明模型组小鼠出现抑郁样行为;与模型组相比,大豆异黄酮和阳性药阿米替林给药后显著提高小鼠的糖水偏爱指数并缩短悬尾中的不动时间,表明大豆异黄酮预防给药对LPS诱导的抑郁行为有改善作用。ELISA结果显示,与空白组相比,LPS组小鼠皮层中IL-6、IL-1β、TNF-α水平显著升高,色氨酸代谢产物5-HT水平显著降低、KYN水平显著升高,表明LPS诱导小鼠出现炎症反应且色氨酸代谢通路异常;与模型组相比,大豆异黄酮和阿米替林预给药显著改善上述异常的指标。综上表明,大豆异黄酮可通过抑制炎症反应和调节色氨酸代谢通路发挥抗抑郁作用。
- Abstract:
- The current study was conducted to explore the effects of soybean isoflavones (SI) on lipopolysaccharide (LPS)-induced depression-like behavior in mice and investigate its possible mechanisms. Sixty SPF C57BL/6J male mice were randomly divided into control group, LPS group, SI low dose group(10 mg·kg-1), SI medium dose group(20 mg·kg-1), SI high dose group(40 mg·kg-1) and positive drug (amitriptyline, 10 mg·kg-1) group, with 10 mice in each group. The depression model was established by acute intraperitoneal injection of LPS(1 mg·kg-1) once after treatment with SI for two weeks. The open field test was used to observe spontaneous activity of mice. Sucrose preference test and tail suspension test were performed to evaluate the depression behaviors of mice. The inflammatory factors (interleukin-6, interleukin-1β, and tumour necrosis factor-α), tryptophan metabolites kynurenine(KYN) and serotonin(5-HT) in the cortex of mice were measured by ELISA. The results of behavioral tests showed that SI did not affect the spontaneous activities of mice, but reversed the decrease of sucrose preference index and prolonged immobility of tail suspension induced by LPS. The results of ELISA showed that compared with control group, LPS treatment significantly increased the contents of pro-inflammatory cytokines and interrupted tryptophan metabolic pathway. However, SI administration effectively reserved these changes. The current study demonstrated that SI had the antidepressant effect, which may be related to inhibit the inflammatory responses and modulate the tryptophan metabolism.
参考文献/References:
[1]Martins J, Brijesh S. Phytochemistry and pharmacology of anti-depressant medicinal plants: A review[J]. Biomedicine & Pharmacotherapy,2018, 104: 343-365. [2]Tran B X, Ha G H, Nguyen D N, et al. Global mapping of 〖JP4〗interventions to improve quality of life of patients with depression during 1990-2018[J].Quality of Life Research, 2020, 29(9): 2333-2343. [3]何海然,薛占霞. 抑郁症相关发病机制的研究进展[J]. 神经药理学报,2016, 6(2): 20-25. (He H R, Xue Z X. Research progress of depression-related pathogenesis [J]. Journal of Neuropharmacology, 2016,6(2):20-25.) [4]李硕,王建. 大豆异黄酮临床应用的研究进展[J]. 大豆科学,2020, 39(4): 633-640. (Li S, Wang J. Research progress in clinical application of soybean isoflavones [J]. Soybean Science, 2020,39(4):633-640.) [5]张珍,韩领,夏晓洋,等. 大豆异黄酮神经保护作用的研究进展[J]. 中国食物与营养. 2019, 25(1): 53-57.(Zhang Z, Han L, Xia X Y, et al. Research progress on neuroprotection of soybean isoflavones [J]. Chinese Food and Nutrition, 2019,25(1):53-57.) [6]Gleason C E, Fischer B L, Dowling N M, et al. Cognitive effects of soy isoflavones in patients with Alzheimer′s disease[J]. Journal of Alzheimers Disease, 2015, 47(4): 1009-1019. [7]Jiang T, Wang X, Ding C, et al. Genistein attenuates isoflurane-induced neurotoxicity and improves impaired spatial learning and memory by regulating cAMP/CREB and BDNF-TrkB-PI3K/Akt signaling[J]. The Korean Journal of Physiology & Pharmacology, 2017, 21(6): 579. [8]王艳,汪远金,蔡标,等. 大豆异黄酮对AD大鼠海马CaM-CaMPK信号转导通路相关蛋白的影响[J]. 中国老年学杂志, 2014, 34(4): 952-954.(Wang Y, Wang Y J, Cai B, et al. Effect of soybean isoflavones on proteins related to CaM-CaMPK signal transduction pathway in hippocampus of AD rats [J]. Chinese Journal of Gerontology, 2014,34(4):952-954.) [9]蔡标,彭代银,汪远金,等. 大豆异黄酮对AD大鼠海马NO-cGMP信号转导系统的影响[J]. 中国中药杂志, 2011, 36(2): 220-223. (Cai B, Peng D Y, Wang Y J, et al. Effects of soybean isoflavones on NO-cGMP signal transduction system in hippocampus of AD rats [J]. Chinese Journal of Traditional Chinese Medicine, 2011,36(2):220-223.)[10]Lu C, Gao R, Lyu J, et al. Neuroprotective effects of soy isoflavones on chronic ethanol-induced dementia in male ICR mice[J]. Food Function, 2020, 11(11): 10011-10021.[11]Lu C, Wang Y, Wang D, et al. Neuroprotective effects of soy isoflavones on scopolamine-induced amnesia in mice[J]. Nutrients, 2018, 10(7):853.[12]何凤琴,向全丽,屈庚超,等. 大豆异黄酮影响C57BL/6J母鼠行为与雌激素受体α的关系[J]. 西安文理学院学报(自然科学版), 2020, 23(1): 50-55. (He F Q, Xiang Q L, Qu G C, et al. The relationship between soybean isoflavones and estrogen receptor α in C57BL/6J female mice [J]. Journal of Xi′an University of Arts and Sciences (Natural Science Edition), 2020,23(1):50-55.)[13]黄蕊,罗涛,刘永芳,等. 丙泊酚对脂多糖诱导的脓毒血症小鼠抑郁样行为和海马炎症反应的影响[J]. 神经损伤与功能重建. 2020, 15(6): 325-328. (Huang R, Luo T, Liu Y F, et al. Effects of propofol on depressive behavior and hippocampal inflammatory response in lipopolysaccharide-induced sepsis mice [J].Nerve Injury and Functional Reconstruction, 2020,15(6):325-328.)[14]薄秀梅,贺玲,张荣丽,等. 姜黄素对脂多糖诱导的小鼠抑郁样行为的影响及机制[J]. 安徽医科大学学报, 2020, 55(7): 1064-1068. (Bo X M, He L, Zhang R L, et al. Effect of curcumin on lipopolysaccharide-induced depression-like behavior in mice and its mechanism [J]. Journal of Anhui Medical University, 2020,55(7):1064-1068.)[15]袁璐,李晋熙,罗跃嘉. 脂多糖连续注射诱发小鼠抑郁行为及认知改变[J]. 成都医学院学报, 2017, 12(5): 536-540.(Yuan L, Li J X, Luo Y J. Depressive behavior and cognitive changes induced by continuous injection of lipopolysaccharide in mice [J]. Journal of Chengdu Medical College, 2017, 12(5): 536-540.)[16]黄红,陈碧清,姜宁,等. 鲜天麻对睡眠干扰诱导小鼠学习记忆障碍的改善作用[J]. 中草药, 2020, 51(9): 2509-2516. (Huang H, Chen B Q, Jiang N, et al. Effect of fresh Gastrodiaelata Blume on learning and memory impairment induced by sleep disturbance in mice [J]. Chinese Herbal Medicine, 2020,51(9):2509-2516.)[17]Strekalova T, Spanagel R, Bartsch D, et al. Stress-induced anhedonia in mice is associated with deficits in forced swimming and exploration[J]. Neuropsychopharmacology, 2004, 29(11): 2007-2017.[18]Jiang N, Wang H, Li C, et al. The antidepressant-like effects of the water extract of Panax ginseng and Polygala tenuifolia are mediated via the BDNF-TrkB signaling pathway and neurogenesis in the hippocampus[J]. Journal of Ethnopharmacology, 2021, 267: 113625.[19]冯殿伟. 抑郁症治疗靶标及其药物研发进展[J]. 中国医院药学杂志, 2018, 38(4): 443-449. (Feng D W. Progress in research and development of therapeutic targets and drugs for depression [J]. Chinese Journal of Hospital Pharmacy, 2018,38(4):443-449.)[20]Remus J L, Dantzer R.Inflammation models of depression in rodents: Relevance to psychotropic drug discovery[J]. The International Journal of Neuropsychopharmacology, 2016, 19(9): pyw028.[21]Lichtblau N, Schmidt F M, Schumann R, et al. Cytokines as biomarkers in depressive disorder: Current standing and prospects[J]. International Review of Psychiatry,2013, 25(5): 592-603.[22]胡明会,李亚琼,张浩,等. 基于抑郁症动物模型炎症机制的研究进展[J]. 医学综述, 2019, 25(12): 2294-2298. ( Hu M H, Li Y Q, Zhang H, et al. Research progress of inflammation mechanism based on depression animal model [J]. Medical Review, 2019,25(12):2294-2298.)[23]Bekris S, Antoniou K, Daskas S, et al. Behavioural and neurochemical effects induced by chronic mild stress applied to two different rat strains[J]. Behavioural Brain Research, 2005, 161(1): 45-59.[24]Lim D W, Park J, Han D, et al. Anti-inflammatory effects of Asianfawn Lily (Erythronium japonicum) extract on lipopolysaccharide-induced depressive-like behavior in mice[J]. Nutrients, 2020, 12(12): 3809.[25]Zhang L, Zhao N, Guo W, et al. Antidepressant-like and anxiolytic-like effects of YL-IPA08, a potent ligand for the translocator protein (18 kDa)[J]. Neuropharmacology,2014, 81: 116-125.[26]Valkanova V, Ebmeier K P, Allan C L. CRP, IL-6 and depression:A systematic review and meta-analysis of longitudinal studies[J]. Journal of Affective Disorders, 2013, 150(3): 736-744.[27]Schmidt F M, Lichtblau N, Minkwitz J, et al. Cytokine levels in depressed and non-depressed subjects, and masking effects of obesity[J]. Journal of Psychiatric Research,2014, 55: 29-34.[28]Wang J, Jia Y, Li G, et al. The dopamine receptor D3 regulates lipopolysaccharide-induced depressive-like behavior in mice[J]. The International Journal of Neuropsychopharmacology, 2018, 21(5): 448-460.[29]吴月容,谷有全,秦红岩. 色氨酸代谢对卒中后抑郁影响的研究[J]. 临床神经病学杂志, 2020, 33(3): 222-225. (Wu Y R, Gu Y Q, Qin H Y. The effect of tryptophan metabolism on post-stroke depression [J]. Journal of Clinical Neurology, 2020,33(3):222-225.)[30]O′Connor J C, Andre C, Wang Y, et al. Interferon-gamma and tumor necrosis factor-alpha mediate the upregulation of indoleamine 2,3-dioxygenase and the induction of depressive-like behavior in mice in response to bacillus Calmette-Guerin[J]. Journal of Neuroscience,2009, 29(13): 4200-4209.[31]Walker A K, Budac D P, Bisulco S, et al. NMDA receptor blockade by ketamine abrogates lipopolysaccharide-induced depressive-like behavior in C57BL/6J mice[J]. Neuropsychopharmacology, 2013, 38(9): 1609-1616.[32]屈悦. 抗抑郁药物的临床应用进展[J]. 蛇志, 2010, 22(2): 142-144. (Qu Y. Clinical application progress of antidepressants [J]. Journal of Snake, 2010,22(2):142-144.)[33]陈景清,张丽,付凤珍,等. 帕罗西汀、文拉法辛、阿米替林对首发抑郁症认知功能的影响[J]. 精神医学杂志, 2011, 24(4): 263-266. (Chen J Q, Zhang L, Fu F Z, et al. Effects of paroxetine, venlafaxine and amitriptyline on cognitive function of first-episode depression [J]. Journal of Psychiatry, 2011,24(4):263-266.)
相似文献/References:
[1]徐美蓉,李玉芳,董煚,等.大豆异黄酮超声波辅助提取条件优化的研究[J].大豆科学,2013,32(01):102.[doi:10.3969/j.issn.1000-9841.2013.01.024]
XU Mei-rong,LI Yu-fang,DONG Jiong,et al.Optimization of Soy Isoflavone Extraction Assisted with Ultrasonic[J].Soybean Science,2013,32(04):102.[doi:10.3969/j.issn.1000-9841.2013.01.024]
[2]陈玉胜.大豆异黄酮抗高尿酸血症活性研究初探[J].大豆科学,2013,32(02):279.[doi:10.3969/j.issn.1000-9841.2013.02.032]
CHEN Yu-sheng.Study on Anti-hyperuricemia Activity of Soybean Isoflavone[J].Soybean Science,2013,32(04):279.[doi:10.3969/j.issn.1000-9841.2013.02.032]
[3]沈丹萍,王小平,秦立强.大豆异黄酮摄入与卵巢癌关系的Meta分析[J].大豆科学,2013,32(06):814.[doi:10.11861/j.issn.1000-9841.2013.06.0814]
SHEN Dan-ping,WANG Xiao-ping,QIN Li-qiang.Isoflavones Intake and Risk of Ovarian Cancer:A Meta Analysis of Epidemiological Study[J].Soybean Science,2013,32(04):814.[doi:10.11861/j.issn.1000-9841.2013.06.0814]
[4]何恩铭,沈瑞池,王 伟,等.紫外分光光度法测定豆渣提取物中大豆异黄酮含量的研究[J].大豆科学,2013,32(06):818.[doi:10.11861/j.issn.1000-9841.2013.06.0818]
HE En-ming,SHEN Rui-chi,WANG Wei,et al.Determination of Isoflavones in Extraction of Soybean Dregs Using Ultraviolet Spectrophotometry[J].Soybean Science,2013,32(04):818.[doi:10.11861/j.issn.1000-9841.2013.06.0818]
[5]彭 游,喻国贞,郎少杰,等.新型大豆异黄酮萘磺酸酯前药的设计合成[J].大豆科学,2013,32(06):854.[doi:10.11861/j.issn.1000-9841.2013.06.0854]
PENG You,YU Guo-zhen,LANG Shao-jie,et al.Design and Synthesis of Novel Genistein Naphthylsulfonate Prodrugs[J].Soybean Science,2013,32(04):854.[doi:10.11861/j.issn.1000-9841.2013.06.0854]
[6]刘少静,王多宁,刁颖博,等.大豆异黄酮纯化工艺研究[J].大豆科学,2013,32(04):535.[doi:10.11861/j.issn.1000-9841.2013.04.0535]
LIU Shao-jing,WANG Duo-ning,DIAO Ying-bo,et al.Optimization on the Purification Technologies of Soybean Isoflavone[J].Soybean Science,2013,32(04):535.[doi:10.11861/j.issn.1000-9841.2013.04.0535]
[7]尹学哲,金延华,金梅花,等.大豆异黄酮对内毒素及D-氨基半乳糖所致小鼠急性肝损伤的保护作用[J].大豆科学,2013,32(04):544.[doi:10.11861/j.issn.1000-9841.2013.04.0544]
YIN Xue-zhe,JIN Yan-hua,JIN Mei-hua,et al.Protective Effects of Soy Isoflavones on Acute Liver Injury Induced by Lipopolysaccharide and D-galactosamine in Mice[J].Soybean Science,2013,32(04):544.[doi:10.11861/j.issn.1000-9841.2013.04.0544]
[8]董军奎,葛晓月.大豆异黄酮:一种多功能植物药[J].大豆科学,2013,32(04):565.[doi:10.11861/j.issn.1000-9841.2013.04.0565]
DONG Jun-kui,GE Xiao-yue.Soy Isoflavone:The Multipurpose Phytopharm[J].Soybean Science,2013,32(04):565.[doi:10.11861/j.issn.1000-9841.2013.04.0565]
[9]李怡然,赵丽芹,李爱科,等.豆浆中水溶性大豆异黄酮检测方法的建立[J].大豆科学,2014,33(03):429.[doi:10.11861/j.issn.1000-9841.2014.03.0429]
LI Yi-ran,ZHAO Li-qin,LI Ai-ke,et al.Construction of Detection Method for Water soluble Isoflavone Content in Soybean Milk[J].Soybean Science,2014,33(04):429.[doi:10.11861/j.issn.1000-9841.2014.03.0429]
[10]刘中华,胡春红,郭 婕,等.低温豆粕中异黄酮和皂甙的微波同步提取工艺[J].大豆科学,2014,33(03):443.[doi:10.11861/j.issn.1000-9841.2014.03.0443]
LIU Zhong-hua,HU Chun-hong,GUO Jie,et al.Microwave Extraction of Isoflavones and Saponins in the Low temperature ?Soybean Meal[J].Soybean Science,2014,33(04):443.[doi:10.11861/j.issn.1000-9841.2014.03.0443]
备注/Memo
收稿日期:2021-02-02