[1]于合龙,刘雨帆,张继成,等.基于多种机器学习方法填补大豆基因组缺失的比较研究[J].大豆科学,2021,40(01):122-129.[doi:DOI:10.11861/j.issn.1000-9841.2021.01.0122]
 YU He-long,LIU Yu-fan,ZHANG Ji-cheng,et al.Comparative Research for Imputation of Soybean Genome Missing Values Based on Various Machine Learning Methods[J].Soybean Science,2021,40(01):122-129.[doi:DOI:10.11861/j.issn.1000-9841.2021.01.0122]
点击复制

基于多种机器学习方法填补大豆基因组缺失的比较研究

参考文献/References:

[1] Hoheisel J D. Microarray technology: Beyond transcript profiling and genotype analysis[J].Nature Reviews Genetics,2006,7(3):200-210.
[2]Little R J A, Rubin D B. Statistical analysis with missing data[M].2nd ed. New York:John Wiley and Sons,2002.
[3]Moorthy K,Mohamad M S,Deris S.Review onmissing value imputation algorithms for microarray gene expression data[J].Current Bioinformatics, 2014,9(1):18-22.
[4]Zhang S C. Shell-neighbor method and its application in missing data[J].Applied Intelligence,2011,35(1):123-133.
[5]Juhee C, Donggyu K, Karl R. Intelligent initialization and adaptive thresholding for iterative matrix completion: Some statistical and algorithmic theory for adaptive-impute[J]. Journal of Computational and Graphical Statistics, 2019, 28(2):323-333.
[6]Hastie T V, Mazumder R. Matrix completion via iterative soft-thresholded SVD[EB/OL]. https://CRAN.R-project.org/package=softImpute,2015-04-08.
[7]吴郁,张金奋,范存龙,等.基于随机森林的船舶碰撞事故缺失数据插补[J].武汉理工大学学报(交通科学与工程版),2019,43(6):1120-1124. (Wu Y, Zhang J F, Fan C L, et al. Imputation of missing values for ship collision accident data based
〖HJ1.85mm〗on random forest[J].Journal of Wuhan University of Technology(Transportation Science & Engineering),2019,43(6):1120-1124.)
[8]孟杰,李春林.基于随机森林模型的分类数据缺失值插补[J].统计与信息论坛,2014,29(9):86-90.(Meng J,Li C L.Missing data imputation for categorical data based on random forest model[J].Statistics & Information Forum,2014,29(9):86-90.)
[9]张晓琴,程誉莹.基于随机森林模型的成分数据缺失值填补法[J].应用概率统计,2017,33(1):102-110.(Zhang X Q,Cheng Y Y.Imputation of missing values for compositional data based on random forest[J]. Chinese Journal of Applied Probability and Statistics,2017,33(1):102-110.)
[10]Meng F C, Cheng C, Hong Y. A bicluster-based bayesian principal component analysis method for microarray missing value estimation[J].Biomedical and Health Informatics,2014,18(3):862-871.
[11]Tang Y, Liu X, Wang J B, et al. GAPIT Version 2: An enhanced integrated tool for genomic association and prediction[J].Plant Genome, 2016, 9(2): 1-9.
[12]何云, 皮德常. 基于精简关联度的基因表达数据迭代填补算法[J]. 计算机科学, 2015, 42(11): 251-255, 283. (He Y, Pi D C.Iterative imputation algorithm based on reduced relational grade for gene expression data[J].Computer Science,2015,42(11):251-255, 283.)
[13]Garcia-Laencina P J, Sancho-Gómez J L, Figueiras-Vidal A R, et al. K nearest neighbours with mutual information for simultaneous classification and missing data imputation[J]. Neurocomputing, 2009,72(7-9):1483-1493.
[14]朱娴,杨明,马卫,等.基于模拟退火优化双聚类的基因数据填补方法[J].计算机应用与软件,2017,34(11):247-251.(Zhu X,Yang M, Ma W, et al. Gene data imputation method based on simulate annealing optimized biclustering[J]. Computer Applications and Software,2017,34(11):247-251.)
[15]唐友,郑萍,王嘉博,等.对比Bayesian B等多种方法的大豆全基因组选择应用研究[J].大豆科学,2018,37(3):353-358.(Tang Y, Zheng P, Wang J B, et al.Application research for soybean genomics selection by comparing Bayesian B and other methods[J].Soybean Science,2018,37(3):353-358.)

备注/Memo

国家自然科学基金(U19A2061); 吉林省科技发展计划(20190301024NY,20200301047RQ); 吉林省发展和改革委员会项目(2020C005)。

更新日期/Last Update: 2021-02-09