YANG Liang,LI Xiang-yu,GAO Peng,et al.Isolation and Expression Pattern Analysis of LRR Kinase Gene Response to Osmotic Stress from Glycine soja [J].Soybean Science,2012,31(05):718-724.[doi:10.3969/j.issn.1000-9841.2012.05.006]
野生大豆胁迫应答LRR类受体蛋白激酶基因的克隆及其表达特性分析
- Title:
- Isolation and Expression Pattern Analysis of LRR Kinase Gene Response to Osmotic Stress from Glycine soja
- 文章编号:
- 1000-9841(2012)05-0718-07
- Keywords:
- Glycine soja; LRR-RLK; Osmotic stress
- 分类号:
- S565.1
- 文献标志码:
- A
- 摘要:
- 从前期构建的野生大豆在高盐、低温、干旱早期的基因表达谱中,选取了在4℃胁迫早期(1 h)上调表达的LRR-RLK的EST,通过SMART和RACE结合的方法获得了GsLRPK的全长序列:该基因全长2 264 bp,共编码714个氨基酸。生物信息学分析表明其氮端含有1个LRR N-terminal domain及串联排列的LRR-Motif;碳端含有丝/苏氨酸蛋白激酶催化结构域的11个亚基。此外,GsLRPK蛋白氮端22个氨基酸为可能的信号肽序列,并且存在1个跨膜结构域,很可能定位于细胞质膜或细胞器膜。半定量PCR分析显示该基因可受干旱、ABA、4℃低温及高盐胁迫的诱导,可能作为一个“关键节点”在胁迫信号传导通路中发挥重要作用。
- Abstract:
- One EST induced by cold represents a leucine-rich repeat receptor-like kinase(LRR-RLK)gene was identified according to the gene expression profiles of Glycine soja leaves under osmotic stresses previously constructed in our laboratory.The full-length cDNA was successfully retrieved by RACE,which was 2 264 bp in length and contains a complete ORF encoding 714 amino acids.The bioinformatics analysis showed that,the GsLRPK protein had an N-terminal signal sequence(residues 1 to 22),extracellular leucine-rich repeats,a single transmembrane region,and a cytoplasmic catalytic domain,considered crucial for kinase activity.What’s more,semi-quantity PCR result showed that the GsLRPK was regulated by different stresses treatment,such as drought,ABA,4℃ cold and high salinity,and could function in the signaling of osmotic stresses.
参考文献/References:
[1]Yang L,Ji W,Gao P,et al.GsAPK an ABA-activated and calcium-independent SnRK2-type kinase from G.soja mediates the regulation of plant tolerance to salinity and ABA stress[J].PLoS ONE,2012,7(3):e33838.doi:10.1371/journal.pone.0033838. [2]Zhou Q Y,Tian A G,Zou H F,et al.Soybean WRKY-type transcription factor genes,GmWRKY13,GmWRKY21 and GmWRKY54,confer differential tolerance to abiotic stresses in transgenic Arabidopsis?plants[J].Plant Biotechnology Journal,2008,6(5):486-503. [3]Yang L,Ji W,Zhu Y M,et al.GsCBRLK,a calcium/calmodulin-binding receptor-like kinase,is a positive regulator of plant tolerance to salt and ABA stress[J].Journal of Experimental Botany,2010,61(9):2519-2533. [4]Yoshioka K,Shinozaki K.Signal crosstalk in plant stress responses[M].Wiley-Blackwell,Malden,2009. [5]Morris E R,Walker J C.Receptor-like protein kinases:the keys to response[J].Current Opinion in Plant Biology,2003,6:339-342. [6]Shiu S H,Karlowski W M,Pan R,et al.Comparative analysis of the receptor-like kinase family in Arabidopsis?and rice[J].Plant Cell,2004,16:1220-1234. [7]Kobe B,Kajava A V.The leucine-rich repeat as a protein recognition motif[J].Current Opinion in Plant Biology,2001,11:725-732. [8]Belkhadir Y,Subramaniam R,Dangl J L.Plant disease resistance protein signaling:NBS-LRR proteins and their partners[J].Current Opinion in Plant Biology,2004,7:391-399. [9]Song W Y,Wang G L,Chen L L,et al.A receptor kinase-like protein encoded by the rice disease resistance gene Xa21[J].Science,1995,270:661-667. [10]Wang G L,Wu C,Zeng L,et al.Isolation and characterization of rice mutants compromised in Xa21-mediated resistance to X.oryzae pv.Oryzae[J].Theoretical and Applied Genetics,2004,108:379-384. [11]Wang Z Y,Seto H,Fujioka S,et al.BRI1 is a critical component of a plasma-membrane receptor for plant steroids[J].Nature,2001,410(6826):380-383. [12]He Z,Wang Z Y,Li J,et al.Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1[J].Science,2000,288(3):2360-2363. [13]Yuriko O,Kyonoshin M,Motoaki S Y,et al.Leucine-rich repeat receptor-like kinase1 is a key membrane-bound regulator of abscisic acid early signaling in Arabidopsis[J].Plant Cell,2005,17:1105-1119. [14]Junga E H,Junga H W,Lee S C,et al.Identification of a novel pathogen-induced gene encoding a leucine-rich repeat protein expressed in phloem cells of Capsicum annuum[J].Biochimica et Biophysica Acta.2004,1676(3):211-222. [15]李勇,朱延明,李杰,等.基于Linux的cDNA文库序列分析平台的构建与应用[J].生物信息学,2005,3:124-127.(Li Y,Zhu Y M,Li J,et al.Construction and application of cDNA library sequence analysis platform based on Linux[J].China Journal of Bioinformatics,2005,3:124-127). [16]周宜君,冯金朝,马文文,等.植物抗逆分子机制研究进展[J].中央民族大学学报(自然科学版),2006,15(2):169-176.(Zhou Y J,Feng J C,Ma W W,et al.Progress of molecular mechanism of stress resistance in plants[J].Journal of the Central University for Nationalities(Natural Sciences Edition),2006,15(2):169-176). [17]杨晓慧,蒋卫杰,魏珉,等.提高植物抗盐能力的技术措施综述[J].中国农学通报,2006,22(1):88-91.(Yang X H,Jiang W J,Wei M,et al.The technical approaches of Improving the plant salt-resistant ability[J].Chinese Agricultural Science Bulletin,2006,22(1):88-91). [18]葛瑛.野大豆碱胁迫转录谱与基因组整合分析[D].哈尔滨:东北农业大学,2010.(Ge Y.Integration of microarray and genome analysis in alkaline-stressed Glycine soja[D].Harbin:Northeast Agricultural University,2010). [19]周国安.大豆抗逆基因GmUBC2、GmPK和GmNHX2分离与功能研究[D].北京:中国农业科学院,2009.(Zhou G A.Isolation and function analysis of stress-responsive genes GmUBC2,GmPKand GmNHX2 from soybean(Glycine MaxL.Merr.)[D].Beijing:Chinese Academy of Agricultural Sciences,2009). [20]Hwang S G,Kim D S,Jang C S.Comparative analysis of evolutionary dynamics of genes encoding leucine-rich repeat receptor-like kinase between rice and Arabidopsis [J].Genetica,2011,139(8):1023-1032. [21]Huang C F,Yamaji N,Ono K,et al.A leucine-rich repeat receptor-like kinase gene is involved in the specification of outer cell layers in rice roots[J].The Plant Journal,2012,69(4):565-576.
相似文献/References:
[1]高越,刘辉,陶波.抗草甘膦野生大豆筛选及其抗性生理机制研究[J].大豆科学,2013,32(01):76.[doi:10.3969/j.issn.1000-9841.2013.01.018]
GAO Yue,LIU Hui,TAO Bo.Screening and Physiological Mechanisms of Resistance to Glyphosate in Wild Soybeans(Glycine soja)[J].Soybean Science,2013,32(05):76.[doi:10.3969/j.issn.1000-9841.2013.01.018]
[2]王军卫,侯立江,李? 登,等.野生大豆紫色酸性磷酸酶PAP1基因的克隆及分析[J].大豆科学,2013,32(05):596.[doi:10.11861/j.issn.1000-9841.2013.05.0596]
WANG Jun-wei,HOU Li-jiang,LI Deng,et al.Cloning and Sequence Analysis of Purple Acid Phosphotase PAP1 Gene in Wild Soybean[J].Soybean Science,2013,32(05):596.[doi:10.11861/j.issn.1000-9841.2013.05.0596]
[3]王军卫,侯立江,李 登,等. 野生大豆紫色酸性磷酸酶PAP1基因的克隆及分析[J].大豆科学,2013,32(05):596.
WANG Jun-wei,HOU Li-jiang,LI Deng,et al. Cloning and Sequence Analysis of Purple Acid Phosphotase PAP1 Gene in Wild Soybean[J].Soybean Science,2013,32(05):596.
[4]王丽燕.硅对野生大豆幼苗耐盐性的影响及其机制研究[J].大豆科学,2013,32(05):659.[doi:10.11861/j.issn.1000-9841.2013.05.0659]
WANG Li-yan.Effects of Silicon on Salt Tolerance of Glycine soja Seedlings and Its Mechanism[J].Soybean Science,2013,32(05):659.[doi:10.11861/j.issn.1000-9841.2013.05.0659]
[5]陈丽丽,王明玖,何丽君,等.野生大豆ISSR体系的优化及其在远缘杂交后代鉴定中的利用[J].大豆科学,2013,32(04):459.[doi:10.11861/j.issn.1000-9841.2013.04.0459]
CHEN Li-li,WANG Ming-jiu,HE Li-jun,et al.Optimization for ISSR Reaction System of Wild Soybean and Its Utilization in Distant Hybrid Identification[J].Soybean Science,2013,32(05):459.[doi:10.11861/j.issn.1000-9841.2013.04.0459]
[6]郑世英,萧蓓蕾,金桂芳.NaCl胁迫对野生大豆和栽培大豆叶绿素及光合特性的影响[J].大豆科学,2013,32(04):486.[doi:10.11861/j.issn.1000-9841.2013.04.0486]
ZHENG Shi-ying,XIAO Bei-lei,JIN Gui-fang.Effect of NaCl Stress on Chlorophyll Content and Photosynthetic Characteristics of Glycine soja and Glycine max[J].Soybean Science,2013,32(05):486.[doi:10.11861/j.issn.1000-9841.2013.04.0486]
[7]徐艳平,胡翠美,张文会,等.干旱胁迫对野生大豆幼苗光合作用相关指标的影响[J].大豆科学,2013,32(03):341.[doi:10.11861/j.issn.1000-9841.2013.03.0341]
XU Yan-ping,HU Cui-mei,ZHANG Wen-hui,et al.Effect of Simulated Drought Stress on Photosynthesis Related Indexes at Seedling Stage of Wild Soybeans[J].Soybean Science,2013,32(05):341.[doi:10.11861/j.issn.1000-9841.2013.03.0341]
[8]胡卫静,何丽君,何劲莉,等.NaCl胁迫对野生与栽培大豆杂交后代株系生理指标的影响[J].大豆科学,2013,32(03):349.[doi:10.11861/j.issn.1000-9841.2013.03.0349]
HU Wei-jing,HE Li-jun,HE Jin-li,et al.Effects of NaCl Stress on Physiological Characters of Soybean Hybrids from Glycine max × Glycine soja[J].Soybean Science,2013,32(05):349.[doi:10.11861/j.issn.1000-9841.2013.03.0349]
[9]王 旻,梁 玉,王欣欣,等.即墨野生大豆主要成分及其营养价值分析[J].大豆科学,2013,32(03):355.[doi:10.11861/j.issn.1000-9841.2013.03.0355]
WANG Min,LIANG Yu,WANG Xin-xin,et al.Assessment on Nutritional Compositions and Value of Jimo Wild Soybean[J].Soybean Science,2013,32(05):355.[doi:10.11861/j.issn.1000-9841.2013.03.0355]
[10]程鹏,徐鹏飞,范素杰,等.野生大豆接种大豆疫霉根腐病菌后过氧化物酶(POD)活性变化[J].大豆科学,2013,32(02):197.[doi:10.3969/j.issn.1000-9841.2013.02.013]
CHENG Peng,XU Peng-fei,FAN Su-jie,et al.Response of POD Activity in Glycine soja ?Inoculated by Phytophthora sojae[J].Soybean Science,2013,32(05):197.[doi:10.3969/j.issn.1000-9841.2013.02.013]
备注/Memo
基金项目:福建省自然科学基金项目(2011J05051);福建省教育厅科技项目(JA11080)。