HE Hui,DING Yi-qiong,WANG Xiao-lin,et al.Cloning of the GsAF1 Gene and Expression Analysis From Soybean (Glycine soja)[J].Soybean Science,2009,28(05):784-790.[doi:10.11861/j.issn.1000-9841.2009.05.0784]
野生大豆GsADF1基因的克隆与表达分析
- Title:
- Cloning of the GsAF1 Gene and Expression Analysis From Soybean (Glycine soja)
- 文章编号:
- 1000-9841(2009)05-0784-07
- Keywords:
- Soybean (Glycine soja); Actin depolymerizing factor; GsADF1; Cloning
- 分类号:
- S565.1
- 文献标志码:
- A
- 摘要:
- ADF蛋白是一种在真核生物中广泛存在的低分子量的肌动蛋白结合蛋白,在细胞分裂、细胞运动、植物顶端生长如花粉管伸长,根毛的形成等重要的生命活动中发挥着重要的作用。以野生大豆(Glycine soja)的叶片cDNA为模板,通过RT-PCR方法扩增分离获得GsADF1基因。该基因全长为 693 bp,包含417 bp的开放阅读框;其编码的ADF蛋白含139个氨基酸残基。运用生物信息学方法将GsADF1与其他物种ADF蛋白氨基酸序列进行多重比对并构建系统进化树,发现GsADF1与其它生物的ADF蛋白具有很高的同源性。这说明植物ADF基因高度保守。为进一步研究GsADF1在野生大豆不同组织,器官以及不同发育期大豆种子中的表达情况,对它进行了荧光定量分析(Real time RT-PCR)。结果表明:GsADF1在野生材料的根、茎、叶、花和种子中都有表达,且以根和花中表达量最高。而对其在不同发育阶段的种子中的分析表明该基因在15DAF、20DAF、30DAF、40DAF和45DAF的种子中都有表达,且以15DAF表达量最低,随后呈上升趋势。其表达量的变化表明GsADF1通过调节肌动蛋白可能参与了种子从胚胎发生到贮藏物质积累的转变。
- Abstract:
- As an important kind of actin binding proteins,actin depolymerizing factor(ADF) with a low molecular weight exsist in eukaryotic cells extensively.ADF play a key roll in cell division,cell movement,plant top growth,such as pollen tube elongation and root hair formation.In this study,we took cDNA of leaves from soybean (Glycine soja) as the template,and cloned GsADF1 by RT-PCR.The full length of GsADF1 was 693 bp,which including 417bp open reading frame(ORF).GsADF1 contained 139 amino acid residues.Comparising multiple amino acid sequences between GsADF1 and ADFs protein from other species,we constructed a phylogenetic tree.We found that they were high homologous and greatly conserved in many amino acid sites.To further study the expression level of GsADF1 in different tissues and differnt development stages of soybean,we chose Real time RT-PCR to analyze it.The results indicated GsADF1expressed in roots,stems,leaves,flowers and seeds.Especially highly expressed in roots and flowers;whereas expressed in 15DAF lowly,and presented a upward trend from 15DAF to 45DAF.The change of expressing level showed GsADF1 possibly involved in the process from embryogenesis to the accumulation of storage material in the seeds.
参考文献/References:
[1] Dong C H,Xia G X,Hong Y,et al.ADF proteins are involved in the control of flowering and regulate F-actin organization,cell expansion,and organ growth in Arabidopsis[J].Plant Cell,2001,13:1333-1346.
相似文献/References:
[1]高越,刘辉,陶波.抗草甘膦野生大豆筛选及其抗性生理机制研究[J].大豆科学,2013,32(01):76.[doi:10.3969/j.issn.1000-9841.2013.01.018]
GAO Yue,LIU Hui,TAO Bo.Screening and Physiological Mechanisms of Resistance to Glyphosate in Wild Soybeans(Glycine soja)[J].Soybean Science,2013,32(05):76.[doi:10.3969/j.issn.1000-9841.2013.01.018]
[2]王军卫,侯立江,李? 登,等.野生大豆紫色酸性磷酸酶PAP1基因的克隆及分析[J].大豆科学,2013,32(05):596.[doi:10.11861/j.issn.1000-9841.2013.05.0596]
WANG Jun-wei,HOU Li-jiang,LI Deng,et al.Cloning and Sequence Analysis of Purple Acid Phosphotase PAP1 Gene in Wild Soybean[J].Soybean Science,2013,32(05):596.[doi:10.11861/j.issn.1000-9841.2013.05.0596]
[3]王军卫,侯立江,李 登,等. 野生大豆紫色酸性磷酸酶PAP1基因的克隆及分析[J].大豆科学,2013,32(05):596.
WANG Jun-wei,HOU Li-jiang,LI Deng,et al. Cloning and Sequence Analysis of Purple Acid Phosphotase PAP1 Gene in Wild Soybean[J].Soybean Science,2013,32(05):596.
[4]王丽燕.硅对野生大豆幼苗耐盐性的影响及其机制研究[J].大豆科学,2013,32(05):659.[doi:10.11861/j.issn.1000-9841.2013.05.0659]
WANG Li-yan.Effects of Silicon on Salt Tolerance of Glycine soja Seedlings and Its Mechanism[J].Soybean Science,2013,32(05):659.[doi:10.11861/j.issn.1000-9841.2013.05.0659]
[5]陈丽丽,王明玖,何丽君,等.野生大豆ISSR体系的优化及其在远缘杂交后代鉴定中的利用[J].大豆科学,2013,32(04):459.[doi:10.11861/j.issn.1000-9841.2013.04.0459]
CHEN Li-li,WANG Ming-jiu,HE Li-jun,et al.Optimization for ISSR Reaction System of Wild Soybean and Its Utilization in Distant Hybrid Identification[J].Soybean Science,2013,32(05):459.[doi:10.11861/j.issn.1000-9841.2013.04.0459]
[6]郑世英,萧蓓蕾,金桂芳.NaCl胁迫对野生大豆和栽培大豆叶绿素及光合特性的影响[J].大豆科学,2013,32(04):486.[doi:10.11861/j.issn.1000-9841.2013.04.0486]
ZHENG Shi-ying,XIAO Bei-lei,JIN Gui-fang.Effect of NaCl Stress on Chlorophyll Content and Photosynthetic Characteristics of Glycine soja and Glycine max[J].Soybean Science,2013,32(05):486.[doi:10.11861/j.issn.1000-9841.2013.04.0486]
[7]徐艳平,胡翠美,张文会,等.干旱胁迫对野生大豆幼苗光合作用相关指标的影响[J].大豆科学,2013,32(03):341.[doi:10.11861/j.issn.1000-9841.2013.03.0341]
XU Yan-ping,HU Cui-mei,ZHANG Wen-hui,et al.Effect of Simulated Drought Stress on Photosynthesis Related Indexes at Seedling Stage of Wild Soybeans[J].Soybean Science,2013,32(05):341.[doi:10.11861/j.issn.1000-9841.2013.03.0341]
[8]胡卫静,何丽君,何劲莉,等.NaCl胁迫对野生与栽培大豆杂交后代株系生理指标的影响[J].大豆科学,2013,32(03):349.[doi:10.11861/j.issn.1000-9841.2013.03.0349]
HU Wei-jing,HE Li-jun,HE Jin-li,et al.Effects of NaCl Stress on Physiological Characters of Soybean Hybrids from Glycine max × Glycine soja[J].Soybean Science,2013,32(05):349.[doi:10.11861/j.issn.1000-9841.2013.03.0349]
[9]王 旻,梁 玉,王欣欣,等.即墨野生大豆主要成分及其营养价值分析[J].大豆科学,2013,32(03):355.[doi:10.11861/j.issn.1000-9841.2013.03.0355]
WANG Min,LIANG Yu,WANG Xin-xin,et al.Assessment on Nutritional Compositions and Value of Jimo Wild Soybean[J].Soybean Science,2013,32(05):355.[doi:10.11861/j.issn.1000-9841.2013.03.0355]
[10]程鹏,徐鹏飞,范素杰,等.野生大豆接种大豆疫霉根腐病菌后过氧化物酶(POD)活性变化[J].大豆科学,2013,32(02):197.[doi:10.3969/j.issn.1000-9841.2013.02.013]
CHENG Peng,XU Peng-fei,FAN Su-jie,et al.Response of POD Activity in Glycine soja ?Inoculated by Phytophthora sojae[J].Soybean Science,2013,32(05):197.[doi:10.3969/j.issn.1000-9841.2013.02.013]
备注/Memo
基金项目:国家重点基础研究发展规划资助项目(2004CB117206);国家高技术研究发展计划资助项目(2006AA10Z1C1)。