不同世代间大豆粒形相关 QTL 的稳定性分析

张继雨 郭 洁 陈峰娜 孝 文 赵 雪 韩英鹏 李文滨 滕卫丽

(东北农业大学 大豆研究所/大豆生物学教育部重点实验室/农业部东北大豆生物学与遗传育种重点实验室 黑龙江 哈尔滨 150030)

摘 要: 以东农 46 和 L+00 构建的重组自交系群体(RILs) 为试验材料,利用 2013 和 2014 年分别在哈尔滨、呼兰、阿城 3 个地点共 6 个环境的数据对不同世代的遗传群体粒形进行单环境 QTL 分析及多环境联合检测。结果表明: 单环境 QTL 分析中 检测到 13 个与粒形相关的 QTL 位于第 5、9、12、15 及 18 连锁群上,其中粒长 QTL 2 个 表型变异贡献率为 21. $61\% \sim 26$. 81%; 粒宽 QTL 5 个,表型变异贡献率为 7. $28\% \sim 18$. 38%; 粒厚 QTL 6 个,表型变异贡献率为 10. $19\% \sim 18$. 44%。位于 $Sat_122 \sim Satt052$ 标记区间的 QTL 位点在粒长及粒厚中都被检测到,位于 $Sat_119 \sim Satt588$ 、 $Satt192 \sim Satt568$ 及 $Sat_401 \sim Satt192$ 标记区间 QTL 位点在粒宽及粒厚中同时被检测到,存在一因多效性。多环境联合分析中,共检测到 15 个与粒形相关的 QTL。并且有 9 个 QTL 位点在单环境及多环境联合检测中均被检测到,表明这些 QTL 表达较为稳定。因此,本研究获得 1 个粒长 QTL($Sat_122 \sim Satt052$)、1 个粒宽 QTL($Satt192 \sim Satt568$) 及2 个粒厚 QTL($Satt192 \sim Satt568$ $Sat_401 \sim Satt192$) 为表现较好的稳定 QTL。

关键词: 大豆; RILs; 粒形; QTL; 稳定遗传

中图分类号: S565. 1 文献标识码: A **DOI**: 10. 11861 / j. issn. 1000-9841. 2016. 04. 0581

Stability Analysis of QTL Associated for Seed Shape Traits in Soybean Content Across Different Generations

ZHANG Ji-yu ,GUO Jie ,CHENG Feng-na , LI Wen ,ZHAO Xue ,HAN Ying-peng ,LI Wen-bin ,TENG Wei-li (Soybean Research Institute ,Northeast Agricultural University/Key Laboratory of Soybean Biology in Chinese Ministry of Education/Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry , Harbin 150030 ,China)

Abstract: A RILs population derived from a cross between Dongnong 46 and L-100 was used in the experiment. The different generation populations were evaluated in three locations (Harbin , Hulan and Acheng), in 2013 and 2014 using single-enviroment QTL analysis and multi-enviroment joint analysis. The results showed that , thirteen QTLs were detected associated with seed shape in single-enviroment QTL analysis , located in 5 , 9 , 12 , 15 , and 18 linkage group. Two QTLs were associated with seed length , explained 21. 61% – 26. 81% of the phenotypic variation. Five QTLs were associated with seed width , explained 7. 28% – 18. 38% of the phenotypic variation. Six QTLs were associated with seed thick , explained 10. 19% – 18. 44% of the phenotypic variation. The QTLs located in the marker interval of Sat_122 – Satt052 associated both seed length and seed thick. The QTLs located in the marker interval of Sat_119 – Satt588 , Satt192 – Satt568 and Sat_401 – Satt192 associated both seed width and seed thick , showed pleiotropy. Fifteen QTLs were detected associated with seed shape in multi-enviroment joint analysis. Nine QTLs were detected in both methods , showed genetic stability.

Keywords: Soybean; RILs; Seed Shape; QTL; Genetic Stability

大豆是重要油料作物,籽粒中蛋白质含量约40% 油分含量约20%,是人类植物蛋白及脂肪的主要来源^[1]。但大豆产量偏低导致大豆产业的发展受到影响。大豆单产是由种植密度、百粒重和单株粒数共同决定的,粒长、粒宽和粒厚是百粒重的重要性状,关系大豆产量、品质和商品外观性,直接影响其市场价值^[2-3]。因此,研究大豆粒形性状具有很重要的意义。

大豆粒形是受多个基因控制的数量性状,其性 状表现由基因型与环境共同决定。利用分子标记 定位其基因位点,明确其效应大小及作用方式,不 仅能了解大豆粒形的遗传机制,而且能为分子标记辅助育种提供理论基础。目前,已有大豆粒形 QTL 定位的相关报道,但由于所用的群体及环境不同,检测到的 QTL 有较大差异。梁慧珍等^[4-5] 利用晋豆23 和灰布支杂交构建的 RILs 将粒形相关 QTL 定位在第1、6、8、10、11、17、20 等连锁群上。Salas 等^[6]以 Minsoy、Archer 和 Noir1 为亲本,使其分别杂交构建了3 个组合 检测到在3 个环境3 个组合中均稳定存在的1 个粒形相关 QTL,位于4 号连锁群上。刘晓芬^[7]用不同生态环境的215 份栽培品种构建了关联分析群体,对粒形相关性状做了关联定位分

收稿日期: 2015-11-20

基金项目: 国家自然科学基金面上项目(31471517); 黑龙江省教育厅科技项目(10531012); 国家现代农业产业技术体系(CARS-04-PS04); 国家"十二五"科技支撑计划(2011BAD35B06_2013BAD20B04)。

第一作者简介: 张继雨(1991-) ,女 .硕士 主要从事大豆品质性状的分子标记研究。E-mail: 1306915460@ qq. com。通讯作者: 滕卫丽(1972-) ,女 .研究员 .硕导 ,主要从事大豆遗传育种与生物技术研究。E-mail: twlneau@ 163. com。

析 检测到的 QTL 在第 $2 \cdot 6$ 等连锁群上。 Moongkanna 等 $^{[8]}$ 以 Pak Chong $2 \times Laos$ 7122 杂交构建的 $F_{2:3}$ 群体为材料 将粒形 QTL 定位在第 $6 \cdot 18$ 号等连锁群上。 Yu 等 $^{[9]}$ 以溧水中子黄豆 \times 南农 493 引 群体 3 个世代($F_{2:3} \sim F_{2:5}$) 为材料 检测到的 QTL 位点位于第 $6 \cdot 7 \cdot 18 \cdot 20$ 等连锁群上。刘春燕等 $^{[10]}$ 以美国大豆品种 Charleston 为母本 ,东农 594 为父本构建的 $F_{2:14}$ 代 RILs 为材料,检测到 QTL 位点在第 $5 \cdot 6 \cdot 10$ 等连锁群上。这些研究定位的粒形相关的 QTL 分布于不同连锁群中 表明粒形相关性状的 QTL 数量虽然很多,但不同遗传背景的群体检测到的 QTL 数量及位置也多有不同。因此,有必要采用与以往不同的群体、在不同的环境条件下对已定位的粒形 QTL 进行验证或检测 QTL 位点。

本研究以性状差异较大的栽培大豆品种东农46 和野生大豆 L-100 为亲本构建的重组自交系群体为试验材料 利用两年三点的数据 采用 QTL Ici-Mapping V 3.2 的完备区间作图法(ICIM) 对粒长、粒宽和粒厚等粒形性状进行单环境的 QTL 定位; 同时联合检测哈尔滨、呼兰及阿城 3 个地点粒形性状表型数据 ,以期明确不同世代间 QTL 的遗传稳定性 ,从而为大豆粒形的分子辅助育种提供理论依据。

1 材料与方法

1.1 材料

东农 46 为栽培大豆 ,由东北农业大学大豆研究 所选育; L-100 为野生大豆 ,从日本引进; 东农 46 和 L-100 杂交衍生的 $F_{2:6}($ n = 129) 和 $F_{2:7}($ n = 129) 代 群体。

1.2 SSR 引物

参照 Cregan 等的"大豆公共图谱"选择了 727 对 SSR 引物 ,用于本研究中大豆遗传图谱的构建 , 引物序列均来自 Soybase 网站 , 由哈尔滨博仕生物技术有限公司合成。

1.3 试验设计

2013 和 2014 年春季分别将供试材料 $F_{2:5}$ 、 $F_{2:6}$ 代家系种植于东北农业大学香坊农场试验基地哈尔滨(E1)、呼兰(E2) 及阿城(E3),秋季收获 $F_{2:6}$ 、 $F_{2:7}$ 代家系的籽粒。取亲本及重组自交系群体的 V5 期的嫩叶,于 -80 $^{\circ}$ 冰箱中备用。

1.4 方法

1.4.1 总 DNA 的提取 取大豆嫩叶约1g 采用改良的 CTAB 法提取亲本及其后代群体的 DNA ,参照楼巧君等[11]的方法。

1.4.2 粒形测定 按照《中国大豆品种志》的标准进行调查考种粒长(seed length,SL)、粒宽(seed width SW)、粒厚(seed thickness ST)3 个性状^[12]。

1.5 数据分析及 QTL 定位

将亲本及其后代群体性状测量值的平均数用于数据分析。表型数据处理及频率分布图在 Excel 2010 中完成。利用 QTL IciMapping V3. 2 的完备区间作图法(ICIM) 取 LOD 值 2. 5 为 QTL 的标准 进行 QTL 定位和效应估算 [13]。利用获得的粒形 QTL 相关的分子标记 在 $F_{2:6}$ 和 $F_{2:7}$ 代不同世代分离群体中进行检测 检验 QTL 在不同世代中的稳定性。

2 结果与分析

2.1 大豆各世代群体粒形的分布

通过对群体亲本 2013 和 2014 年两年三点表型数据统计(表1),两亲本在粒形之间有较明显差异,为粒形的 QTL 分析提供了良好的遗传背景。RILs群体的粒长、粒宽和粒厚的最小值、最大值差异显著,对偏度及峰度检验表明,多个环境下粒形相关性状的峰度和偏度的绝对值均小于1,只有个别环境表现出较高的值,但是不影响各性状的正态分布,适合进行 QTL 分析(表1 和图1)。

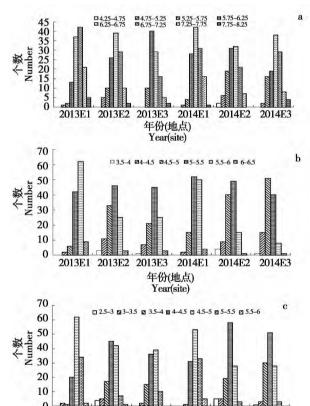

表 1 亲本及群体的粒形统计分析

Table 1 Statistical analysis for seed shape traits of parents and different populations

性状 Trait	111.75				亲本 Parent				
	世代 Generation	环境 Environment	幅度 Range	均数 Mean	标准差 SD	峰度 Kurtosis	偏度 Skewness	东农 46 Dongnong 46	L-100
粒长 SL /mm	F _{2:6}	E1	5. 21 ~ 8. 23	6. 84	0. 54	-0.26	0. 37	7. 87	5. 73
	$F_{2:7}$	E1	4. 77 ~ 7. 89	6. 62	0. 53	-0.22	0.50	7. 44	6. 77
	$F_{2:6}$	E2	5. 02 ~ 7. 90	6. 47	0. 62	-0.19	-0.24	7. 60	5. 71
	$F_{2:7}$	E2	4. 39 ~ 7. 59	6. 23	0. 67	-0.29	0. 26	7. 17	6. 76
	$F_{2:6}$	E3	5. 34 ~ 8. 21	6. 36	0. 55	0.74	0.61	7. 78	5. 62
	$F_{2:7}$	E3	4. 81 ~ 7. 98	7. 14	7. 02	-0.15	-0.17	7. 54	6. 26

续表1

性状 Trait	世代 Generation	I **		亲本 Parent					
		环境 Environment	幅度 Range	均数 Mean	标准差 SD	峰度 Kurtosis	偏度 Skewness	东农 46 Dongnong 46	L-100
粒宽 SW /mm	F _{2:6}	E1	4. 11 ~ 6. 48	5. 53	0.40	-0.60	1.73	7. 14	3. 70
	$F_{2:7}$	E1	4. 27 ~ 6. 34	5. 43	0.38	-0.27	0. 14	6. 69	4. 34
	$F_{2:6}$	E2	3. 58 ~ 6. 37	5. 12	0. 52	-0.39	0. 23	7. 04	3.81
	$F_{2:7}$	E2	3. 36 ~ 6. 09	5. 02	0.46	-0.60	1.40	6. 60	4. 44
	$F_{2:6}$	E3	3. 98 ~ 6. 14	5. 21	0.44	-0.20	-0.13	7. 12	3. 57
	$F_{2:7}$	E3	3. 95 ~ 6. 02	5. 03	1. 05	0. 03	-0.08	6. 79	4. 00
粒厚 ST /mm	$F_{2:6}$	E1	3. 23 ~ 5. 67	4. 78	0.39	-0.88	2. 70	6. 25	3. 53
	$F_{2:7}$	E1	3. 66 ~ 5. 74	4. 80	0.37	0. 12	-0.06	6.31	3.80
	$F_{2:6}$	E2	2. 63 ~ 5. 55	4. 35	0. 54	-0.87	1. 33	5. 89	3.41
	$F_{2:7}$	E2	2. 35 ~ 5. 23	4. 20	0.50	-1.22	2. 45	5. 94	3. 69
	$F_{2:6}$	E3	3. 45 ~ 5. 47	4. 47	0.45	-0.08	-0.35	5. 6	3. 27
	F _{2:7}	E3	2. 63 ~ 5. 40	4. 28	0.75	-0.36	0.70	5. 65	3. 16

- a: 粒长; b: 粒宽; c: 粒厚。
- a: Seed length; b: Seed width; c: Seed thickness.

图 1 大豆 RIL 群体 2013 和 2014 年 3 个 地点粒形性状的频率分布图

2013E1 2013E2 2013E3 2014E1 2014E2 2014E3

年份(地点) Year(site)

Fig. 1 Seed shape frequency distribution diagram of soybean RIL in 2013 and 2014

2.2 遗传连锁图谱构建

利用 727 对 SSR 引物在亲本东农 46 和 L-100

进行筛选 其中 245 对引物具有多态性 多态性引物的频率 33.7%。选择亲本间多态性表现良好的 155 对 SSR 引物对 RILs 进行检测 并构建遗传图谱。遗传图谱总标记数 153 个 分布于 17 个连锁群上 ,全长 3 198.2 cM 标记间平均距离为 20.9 cM ,最小间距为 0.42 cM ,其中第 7、9、12、13 和 18 连锁群上标记数较多。

2.3 单环境检测的粒形性状 QTL

根据东农 46 和 L-100 及 RILs 构建的大豆遗传 图谱 取 LOD 值 2.5 为 QTL 的阈值 对群体中分离 的大豆粒形进行单环境 QTL 分析。结果表明: 控制 大豆粒形相关性状的 QTL 定位在 5 个连锁群中。 两年三点 6 个环境下 3 个表型性状共检测到 13 个 QTL(表 2)。

粒长性状在 2013 年的 E2 环境下检测到 2 个 QTL 位点 ,位于第 5 及 12 号连锁群上 ,LOD 值在 $2.55\sim5.26$,解 释 表 型 贡 献 率 为 $21.61\%\sim26.81\%$,加性效应在 $-0.32\sim-0.29$ 。在 2014 年 没有检测到 QTL。

粒宽性状在 2013 年的 3 个环境下共检测到 5 个 QTL 位点 ,分别位于第 9、12 及 15 号连锁群上 , LOD 值为 2.57 ~ 4.40 解释表型贡献率为 7.28% ~ 18.38% 加性效应在 -0.20 ~ 0.17。在 2014 年的环境中没有检测到 QTL。

粒厚性状在 2013 年的环境下检测到 5 个 QTL 位点 分别位于第 9×12 及 18 号连锁群上 LOD 值为 2.55 ~ 5.39 ,解 释 表 型 贡 献 率 为 $10.19\% \sim 18.44\%$ 加性效应为 $-0.23 \sim 0.19$ 。在 2014 年的环境中检测到 1 个 QTL 位点 Satt $192 \sim$ Satt 568,位于第 12 号连锁群上 LOD 值为 2.95,解释表型贡献率

为 11.87% 加性效应为 -0.13。该 QTL 在 2013 及 2014 年粒厚检测中均被检测到 ,其 LOD 值分别为 3.39 和 2.95 ,解释表型贡献率分别为 14.74%、11.87% 加性效应分别为 -0.17 和 -0.13。

此外 在第9号染色体 Sat_119~Satt588 及第

12 号染色体 Satt192 ~ Satt568 区间,同时检测到粒宽及粒厚的 QTL; 在第 12 号染色体 Sat_122 ~ Satt052 区间,同时检测到粒长及粒厚的 QTL; 在第 12 号染色体 Sat_401 ~ Satt192 区间,同时检测到粒宽及粒厚的 QTL,证明存在一因多效性。

表 2 2013 和 2014 年不同环境下 RIL 群体粒形相关性状 QTL

Table 2 Grain shape traits QTL of RIL populations in different environments during 2013 and 2014

性状 Trait	世代 Generati-on	环境 EN	染色体 Chromosome	位置 Position	标记区间 Marker interval	LOD	贡献率 PVE/%	加性效应 Add
粒长 SL	F _{2:6}	E2	5	20	Satt619 ~ Satt236	2. 55	21. 61	-0.29
			12	215	Sat_122 ~ Satt052	5. 26	26. 81	-0.32
粒宽 SW	$F_{2:6}$	E1	9	208	Sat_119 ~ Satt588	3. 47	18. 38	0. 17
		E2	12	228	Satt052 ~ Sat_401	3. 64	10. 88	-0.17
			12	258	Sat_401 ~ Satt192	4. 40	14. 29	-0.20
			15	53	Satt045 ~ Sat_124	2. 57	7. 28	-0.14
		E3	12	266	Satt192 ~ Satt568	2. 77	16. 46	-0.18
粒厚 ST	$F_{2:6}$	E2	12	213	Sat_122 ~ Satt052	3. 04	11. 23	-0.18
			12	257	Sat_401 ~ Satt192	5. 39	18. 44	-0.23
			18	207	Satt564 ~ Sat_315	3. 22	11. 84	0. 19
		Е3	9	203	Sat_119 ~ Satt588	2. 55	10. 19	0. 14
			12	263	Satt192 ~ Satt568	3. 39	14. 74	-0.17
	$F_{2:7}$	E1	12	262	Satt192 ~ Satt568	2. 95	11. 87	-0.13

2.4 多环境联合检测粒形 QTL 及 QTL 与环境的 互作

应用基于 ICIM 的分析方法,联合检测 2013 和 2014 年 E1、E2 及 E3 共 6 种环境的粒形性状表型数据,共检测到 15 个粒形 QTLs(表 3)。其中有 3 个粒长 QTLs,位于第 12 和 14 号连锁群上,LOD 值为 3. 19 ~ 6. 22,加性效应值在 $-0.32 \sim -0.1$,解释表型贡献率为 $1.04\% \sim 6.35\%$; 6 个粒宽 QTLs,位于第 9、12、14 及 15 号连锁群上,LOD 值为 $3.03 \sim 8.01$ 加性效应值为 $-0.12 \sim 0.1$,解释表型贡献率为 $2.17\% \sim 7.12\%$; 6 个粒厚 QTLs,位于第 9、12、13 及 18 号连锁群上,LOD 值在 $2.52 \sim 8.18$ 加性效应值为 $-0.13 \sim 0.09$ 解释表型贡献率为 $1.99\% \sim 8.37\%$ 。

在 $F_{2:6}$ 代和 $F_{2:7}$ 代都检测到 1 个与粒长相关的 QTL 位点 位于 12 号连锁群上 在标记区间Sat_122 ~ Satt052 ,LOD 值为 3. 61 ~ 6. 22 ,解释表型贡献率为 1. 04% ~ 6. 35% ,并且在该标记区间 $F_{2:6}$ 代同样检测到与粒厚相关的 QTL 位点 ,其 LOD 值 4. 18 ,解释表型贡献率 3. 82%; 在标记 Satt052 附近同样检测

到与粒宽相关的 QTL 位点; 在 $F_{2:6}$ 代和 $F_{2:7}$ 代同时检测到 1 个与粒宽相关的 QTL 位点 ,位于 12 号连锁群上 在标记区间 Satt 192 ~ Satt 568 ,LOD 值为 3.98 ~ 8.01 ,解释表型贡献率为 3.08% ~ 7.12% ,并且在该标记期间 $F_{2:6}$ 代也检测到与粒厚相关的 QTL 位点 其 LOD 值为 5.65 ,解释表型贡献率为 5.30%; $F_{2:6}$ 和 $F_{2:7}$ 代在 12 号连锁群上均检测到与粒厚相关的 QTL 位点 ,位置有所不同 ,但都在 Satt 192 附近。

在所检测到的 15 个 QTL 中,位于 Sat_122 ~ Satt052 的 1 个粒长 QTL、位于 Satt052 ~ Sat_401 的 1 个粒宽 QTL 及位于 Sat_122 ~ Satt052、 Sat_401 ~ Satt192、Satt564 ~ Sat_315 的 3 个粒厚 QTL 共 5 个 QTL 与环境之间存在很明显的互作效应(表 3),但单个 QTL 表型变异的贡献率较小,在 0.08% ~ 2.27%。以 Sat_401 ~ Satt192 的粒厚 QTL 的解释表型贡献率最大,也仅为 2.27%,远小于其自身加性效应 8.37% 的贡献率 表明粒形性状受环境影响相对较小。

表 3 ICIM 法检测 RIL 群体的粒形 QTL 与环境互作结果

Table 3 QTL detection and environment interaction results of seed shape traits from RIL populations under different environments using ICIM method

性状	世代	染色体	位置	标记区间	LOD	LOD	LOD	贡献率	PVE	PVE	Add	AbyE_01	AbyE_02	AbyE_03
Trait	Generation	Chromosome	Position	Marker interval		(A)	(AbyE)	PVE/%	(A)	(AbyE)		, –		
粒长 SL	$F_{2:6}$	12	214	Sat_122 ~ Satt052	6. 22	5. 21	1.01	6.35	4. 82	1.53	-0.13	0.01	-0.09	0.08
		14	180	Satt168 ~ Satt556	3. 19	3. 11	0.08	3. 07	2. 99	0.08	-0.1	-0.02	0	0.02
	$F_{2:7}$	12	216	Sat_122 ~ Satt052	3. 61	0.65	2. 96	1.04	0. 62	0.42	-0.32	0. 21	0. 17	-0.37
粒宽 SW	F _{2:6}	9	203	Sat_119 ~ Satt588	4. 57	3.44	1. 14	3.70	3.00	0.70	0.08	0.05	-0.04	-0.01
		12	227	Satt052 ~ Sat_401	4. 92	3.91	1.01	4. 80	3.45	1. 35	-0.08	0.02	-0.07	0.06
		12	263	Satt192 ~ Satt568	8. 01	7. 87	0. 15	7. 12	6. 54	0.58	-0.12	0.04	-0.05	0. 01
		15	53	Satt045 ~ Sat_124	3. 55	3.00	0.55	3.51	2. 62	0.89	-0.07	0.03	-0.06	0.03
	F _{2:7}	12	267	Satt192 ~ Satt568	3. 98	2. 83	1. 15	3.08	2. 84	0. 24	-0.12	0.04	0.01	-0.05
		14	101	Satt687 ~ Satt577	3. 03	1.91	1. 12	2. 17	2.05	0.12	0. 1	-0.03	0	0.03
粒厚 ST	$F_{2:6}$	9	202	Sat_116 ~ Sat_119	4. 82	4. 02	0.80	3.75	3. 39	0.35	0.09	0. 02	-0.04	0.02
		12	205	Sat_122 ~ Satt052	4. 18	2. 31	1.87	3. 82	1. 98	1.84	-0.07	-0.02	-0.07	0.08
		12	260	Sat_401 ~ Satt192	8. 18	6. 77	1. 42	8. 37	6. 1	2. 27	-0.11	0.09	-0.08	-0.01
		13	232	Satt395 ~ Satt649	2. 52	2. 37	0. 14	1. 99	1.95	0.05	-0.06	0.01	0.01	-0.01
		18	204	Satt564 ~ Sat_315	3. 44	2. 62	0. 82	3.38	2. 22	1. 15	0.07	-0.04	0.07	-0.03
	$F_{2:7}$	12	263	Satt192 ~ Satt568	5. 65	4. 75	0.90	5.30	5. 03	0. 28	-0.13	0.01	0.03	-0.04

3 讨论

本研究采用的亲本材料是东农 46 和 L-100 ,二 者在粒长、粒宽及粒厚上均具有较大的差异 ,因此在利用其后代群体进行 QTL 定位研究时具有很多的优势 能更好地发现影响性状的 QTL 位点。另外环境条件也是影响 QTL 不稳定的一个重要因素[11]。将不同世代群体 RILs 连续两年在相同的 3 个地点种植 ,避免了因环境引起的 QTL 检测的误差;由于基因受到环境的影响 在 3 个地点环境下检测到的 QTL 有很大差异 ,但在不同环境下检测到相同位点 表明该位点更加稳定。

本研究利用东农 46 和 L-100 构建的 RILs 对粒形性状进行了单环境的 QTL 定位 ,共有 13 个粒形性状相关 QTL 被检测到 ,但不同试验地点不同年份检测到的 QTL 数量及位点具有很大差异。本研究定位的粒形 QTL 位点主要位于第 5、9、12、15 及 18 号连锁群上 ,与陈强^[14]、梁慧珍等^[12] 定位的结果不同 ,可能是研究材料遗传背景不同。应用多环境联合分析检测法 ,两年三点 6 个环境下共检测到 15 个粒形相关 QTL ,其中位于 Sat_122 ~ Satt052 标记区间的粒长 QTL 位点不仅同时被两种方法重复检测到 ,并且在 2013 及 2014 年的环境互作分析中都被检测到; 位于 Sat_119 ~ Satt588、Satt052 ~ Sat_401、Satt045 ~ Sat_124 及 Satt192 ~ Satt568 标记区间的粒宽 QTL 位点同时被两种方法重复检测到 ,其中

Satt192 ~ Satt568 标记区间的 QTL 位点环境互作分析时在 2013 和 2014 年中均被检测到; 位于Sat_401 ~ Satt192、Sat_122 ~ Satt052、Satt564 ~ Sat_315 及 Satt192 ~ Satt568 标记区间的粒厚 QTL 位点在同时被两种方法重复检测到 其中 Satt192 ~ Satt568 标记区间的 QTL 位点在单环境的 QTL 定位中在 2013 和 2014 年均被检测到。以上 QTL 在单个环境及多环境联合检测中均能被检测到 ,表明其表达较稳定。但两种方法检测的 QTL 解释表型贡献率有所不同,多环境联合法检测的 QTL 解释表型贡献率较小。杨占烈等[15]检测水稻粒形相关性状 QTL 及 QTL 与环境的互作研究中同样有这种结果。

4 结 论

利用东农 46×L-100 构建的重组自交系在两年三种生态环境下,利用 ICIM 法对不同年份种植的不同世代遗传群体的粒形性状进行单环境 QTL 分析及多环境联合检测。分别检测到 13 及 15 个 QTL, 重复检测到9个 QTL 稳定性较强。其中以1个粒长QTL(Sat_122~Satt052)、1个粒宽 QTL (Satt192~Satt568)及2个粒厚 QTL(Satt192~Satt568)及2个粒厚 QTL(Satt192~Satt568 Sat_401~Satt192)等 QTL 表现较好,并且粒形 3个性状的稳定 QTL 集中分布在 12 号染色体上,这些 QTL 集中分布的情况为粒形 QTL 的精细定位及分子辅助育种提供了可能。这4个 QTL 在大豆分子标记辅助育种工作中将具有一定的应用价值。

参考文献

- [1] Hyten D L , Pantalone V R , Sams C E , et al. Seed quality QTL in a prominent soybean population [J]. Theoretical and Applied Genetics , 2004 , 109: 552-561.
- [2] Wilson D O. Storage of orthodox seeds [M]//Basra A S. Seed quality: Basic mechanisms, agricultural implications. New York: Food Products Press, 1995: 173-208.
- [3] 来永才,李炜,王庆祥,等.黑龙江省野生大豆高异黄酮新种质创新利用 I 异黄酮含量及与籽粒相关性状的分析 [J]. 大豆科学,2006,25(4):414-416. (Lai Y C, Li W, Wang Q X, et al. Innovation and utilization of new high isoflavone resource of wild soybean in Heilongjiang Province: I. Analysis of isoflavone content and relevant of characters [J]. Soybean Science, 2006, 25 (4):414-416.)
- [4] 梁慧珍,王树峰,余永亮,等.6种大豆粒形性状的QTL定位 [J]. 河南农业科学,2008(9):45-51. (Liang H Z, Wang S F, Yu Y L, et al. [J]. QTL mapping of 6 seed shape traits in soybean[J]. Henan Agriculture Sciences, 2008(9):45-51.)
- [5] 梁慧珍,余永亮,杨红旗,等.不同环境下大豆荚粒性状的遗传与QTL分析[J].中国农业科学,2012,45(13):2568-2579.(Liang H Z, Yu Y L, Yang H Q, et al. Genetic analysis and QTL mapping of pod-seed traits in soybean under different environments[J]. Scientia Agricultra Sinica,2015,45(13):2568-2579.)
- [6] Salas P, Oyarzo-Llaipen J C, Wang D, et al. Genetic mapping of seed shape in three populations of recombinant inbred lines of soybean (Glycine max L. Merr.) [J]. Theoretical and Applied Genetic, 2006, 113: 1459-1466.
- [7] 刘晓芬. 大豆栽培品种群体粒形性状及百粒重的关联分析 [D]. 南京: 南京农业大学 , 2010. (Liu X F. Association analysis for seed shape traits and 100-seed weight in soybean (*Glycine max* L. Merr.) [M]. Nanjing: Nanjing Agricultural University , 2010.)
- [8] Moongkanna J, Nakasathien S, Novitzky WP, et al. SSR markers linking to seed traits and total oil content in soybean [J]. Thai

- Journal of Agricultural Science, 2011, 44(4): 233-241.
- [9] Xu Y , Li H N , Li G J , et al. Mapping quantitative trait loci for seed size traits in soybean(Glycine max L. Merr.) [J]. Theoretical and Applied Genetics , 2011 , 122: 581-594.
- [10] 刘春燕,齐照明,韩冬伟,等.大豆产量相关性状的多年多点 QTL分析[J]. 东北农业大学学报,2010,41(11):1-9. (Liu CY,QiZM, Han DW, et al. QTL analysis of yield components on soybean under different environment [J]. Journal of Northeast Agricultural University,2010,41(11):1-9.)
- [11] 楼巧君,陈亮,罗利军. 三种水稻基因组 DNA 快速提取方法的比较[J]. 分子植物育种,2005,3(5):749-752. (Lou Q J, Chen L, Luo L J. Comparison of three rapid methods of DNA extraction from rice [J]. Molecular Plant Breeding,2005,3(5):749-752.)
- [12] 梁慧珍 余永亮 杨红旗 筹. 大豆粒形性状主效 QTL、环境互作和上位性检测 [J]. 中国农业科学,2013,46(24):5081-5088. (Liang H Z, Wang S F, Yu Y L, et al. Main, environmentally interacted and epistatic QTL for seed shape traits in soybean [J]. Scientia Agricultra Sinica, 2013,46(24):5081-5088.)
- [13] 刘顺湖,周瑞宝,喻德跃,等.大豆蛋白质有关性状的 QTL 定位 [J]. 作物学报,2009,35(12):2139-2149. (Liu S H, Zhou R B, Yu D Y, et al. QTL mapping of protein related traits in soybean [Glycine max (L.) Merr.] [J]. Acta Agronomica Sinica, 2009,35(12): 2139-2149.)
- [14] 陈强. 大豆籽粒相关性状 QTL 定位分析[M]. 河北: 河北科技师范学院, 2014. (Chen Q. QTL mapping for seed related traits in soybean (*Glycine max L. Merr.*) [M]. Hebei: Hebei Normal University of Science & Technology, 2014.)
- [15] 杨占烈,戴高兴,翟荣荣,等. 多环境条件下超级杂交稻协优9308 重组自交系群体粒形性状的 QTL 分析 [J]. 中国水稻科学,2013,27(5): 482-490. (Yang Z L, Dai G X, Zhai R R, et al. QTL analysis of rice grain shape traits by using recombinant inbred lines from super hybrid rice Xieyou 9308 in Multi-environments [J]. Chinese Journal of Rice Science, 2013,27(5): 482-490.)