Feb.

2014

侧向施肥距离对大豆氮磷钾吸收及产量的影响

宋秋来1,张晓雪2,周 全3,龚振平1,马春梅1,董守坤1,徐 瑶1

(1. 东北农业大学 农学院, 黑龙江 哈尔滨 150030; 2. 上海丰科生物科技股份有限公司, 河北 秦皇岛 066000; 3. 黑龙江省八五二农场, 黑龙江 宝清 155620)

摘 要:以绥农14为材料,采用框栽与15N示踪相结合的方法,研究侧向施肥距离变化对大豆氮磷钾吸收及产量的影 响,为合理施肥位置的确定提供依据。结果表明:大豆植株干物质积累及产量随着侧向施肥距离的增加呈逐渐减少 的趋势;盛荚期(R4)之前大豆植株干物质积累量以种下 6 cm 施肥最高,成熟期(R8)干物质积累量及产量以种下 6 cm 侧向 6 cm 处理最高, 在侧向 0~12 cm 处理间无明显差异。大豆植株氮磷钾含量及积累量与干物质积累及产量表 现出相同的趋势,即随着侧向施肥距离的增加而逐渐降低;大豆生长发育前期(V3~R1)植株氮磷钾含量及积累量以种 下 6 cm 施肥处理最高,中后期(R2~R8)以种下 6 cm 侧向 0~12 cm 范围内施肥效果较好。施于种下 6 cm 侧向 0~6 cm 最有利于大豆开花前对氮肥的吸收,明显优于种下 6 cm 侧向 18~24 cm 施肥处理对氮肥的吸收效果。

关键词:大豆;侧向施肥;干物质积累;产量

中图分类号:S565.1 文献标识码:A 文章编号:1000-9841(2014)01-0079-04

Effect of Lateral Fertilization Distance on N, P and K Absorption and Yield in Sovbean

SONG Qiu-lai¹, ZHANG Xiao-xue², ZHOU Quan³, GONG Zhen-ping¹, MA Chun-mei¹, DONG Shou-kun¹, XU Yao¹ (1. College of Agriculture, Northeast Agricultural University, Harbin 150030, China; 2. Shanghai Finc Tech Inc, Qinhuangdao 066000, China; 3. 852 State Farm, Baoqing 155620, China)

Abstract: Under the uniform vertical fertilization distance of 6 cm below seed, the 0,6,12,18 and 24 cm horizontal lateral fertilization distance (HLFD) were adopted and the dynamics of N,P and K absorption, dry mater accumulation (DMA) as well as soybean seed yield (SY) were determined under frame-planting and 15 N tracer technique with Suinong14 as material. DMA and SY decreased with the increment of lateral fertilization distance. Highest DMA before R4 was obtained at 0 cm of HLFD. Highest DMA and SY at R8 were obtained at 6 cm of HLFD, and there were no significant difference between 0-12 cm of HLFD. Plant N,P,K content and accumulation decreased with the increment of lateral fertilization distance. In the former grow stage (V3-R1), the highest plant N, P, K content and accumulation was obtained at 0 cm of HLFD, and those in the later growth stage (R1-R8) was obtained at 0-12 cm of HLFD. The 0-6 cm of HLFD were benefit for nitrogen absorption before flowering, which was obviously better than 18-24 cm of HLFD.

Key words: Soybean; Lateral fertilization; Dry matter accumulation; Yield

大豆是我国重要的粮食和油料作物,近年来由 于大豆单产低、比较效益差,我国大豆播种面积与 总产量持续下降,严重威胁国家粮食安全。合理施 肥是提高大豆产量的重要途径,适宜的施肥位置对 提高大豆产量及肥料利用率具有重要作用。研究 表明,大豆分层深施肥,有利于植株生长发育和干 物质积累,增产显著[1];施肥深度以纵向 10~ 12 cm, 侧距以距种床中心 5 cm 以内为好^[2]; 张晓雪 等[3]认为种下 6 cm 施肥效果最理想, 而 Bullen 等[4]的研究表明,磷肥直接施于种子下方 2.5 cm 处 更有利于增加大豆产量、提高磷吸收和磷肥利用 率。由于研究方法和条件的不同,国内外学者对大 豆的适宜施肥位置并未形成一致的结论。本试验

以大豆品种绥农 14 为材料,采用框栽与15N 示踪相 结合的方法,研究侧向施肥距离变化对大豆氮磷钾 吸收及产量的影响,旨在为大豆合理施肥位置的确 定提供理论依据。

材料与方法

1.1 试验设计

试验于2010年在东北农业大学香坊实验实习基 地进行,供试大豆品种为绥农14。采用硬化塑料制成 的无底方框进行栽培,方框长 50 cm、宽 20 cm、深度 33 cm,埋土深度 30 cm,露出地表 3 cm,每框装土量 39 kg。供试土壤为黑土,其基础肥力为有机质 14.60 g·kg⁻¹, 铵态氮 12.50 mg·kg⁻¹, 硝态氮34.15 mg·kg⁻¹,

收稿日期:2013-07-04

基金项目:国家科技支撑计划课题(2006BAD21B01;2014BAD11B01)。

第一作者简介:宋秋来(1985-),男,在读博士,主要从事大豆栽培生理及保护性耕作研究。E-mail:sql142913@163.com。

通讯作者: 龚振平(1966-), 男, 教授, 博士生导师, 主要从事大豆栽培生理及保护性耕作研究。 E-mail; gzpyx2004@ 163. com。

速效磷 15.91 mg·kg⁻¹,速效钾 197.56 mg·kg⁻¹。

根据前期的研究结果,大豆施肥深度在种下 6 cm时增产效果最好^[3]。为此,试验设置 5 个侧向施肥距离,均施于种下 6 cm 水平线上,距种子下方的水平距离分别为 0,6,12,18,24 cm,分别用 T_0 、 T_6 、 T_{12} 、 T_{18} 、 T_{24} 表示。

每框施用¹⁵ N 标记的(NH₄)₂SO₄(购于上海化工研究院, ¹⁵ N 丰度 10.2%; N:21.2%)1.50 g(150 kg·hm⁻²)、重过磷酸钙(P₂O₅:46.0%)1.50 g(150 kg·hm⁻²)、硫酸钾(K₂O:30.0%)1.50 g(90 kg·hm⁻²),3 种肥料混合后在播种时一次施人。

具体施肥方法为:首先在方框内装好底土,浇透水,使土层距离框上沿9 cm, T_0 处理在框的短中线处施入肥料, T_6 处理在距离中线6 cm 处的两侧施肥, T_{12} 处理在距离中线的12 cm 处两侧施肥,以此类推。然后覆土6 cm,5 月8 日沿中线播种,覆土3 cm,齐苗后定苗,每框保苗3 株。

分别于 V3、R1、R2、R4 和 R8 期,选择晴天上午 9:00~10:00 进行取样。地上部分自子叶痕处取下, 根系及根瘤挖出后用水冲净;样品 105℃ 杀青后 65℃烘干累计48 h,测量干重,粉碎后待分析用。在 大豆叶片出现枯萎时,用 1.5 m 高的透明纱网将框围起来,收集全部叶片与叶柄。

1.2 测定项目与方法

以 $CuSO_4$ 和 K_2SO_4 为催化剂,浓 H_2SO_4 消化后,采用 B-324 全自动凯氏定氮仪测定氮素含量;采用 MAT – 251 型质谱仪,将测定氮素含量的滴定液酸化浓缩后上机测定¹⁵ N 丰度;以 $CuSO_4$ 和 K_2SO_4 为催化剂,浓 H_2SO_4 消化后,采用钼锑抗比色法测定磷素含量;以 H_2O_2 为催化剂,浓 H_2SO_4 消化后,采用 M410 火焰光度计测定钾素含量。

1.3 数据处理

采用 SPSS 17.0 和 Excel 2003 进行数据处理。

2 结果与分析

2.1 侧向施肥距离对大豆植株干物质积累及产量 的影响

由表 1 可知, V3、R1、R2 和 R4 期 T₀处理干物质积 累量最高, R8 期 T6 处理干物质积累最高; 产量也以 T6 最高, 但整个生育期内 T0、T6 和 T12 之间干物质积累 及产量差异不显著。由此可知, 种下 6 cm 侧向 0 ~ 12 cm 施肥最有利于大豆干物质积累及产量形成。

表 1 侧向施肥对大豆植株干物质积累量及产量的影响

Table 1 The effect of lateral fertilizer distance on soybean dry matter accumulation and yield (g·frame⁻¹)

		产量				
Treatment	V3	R1	R2	R4	R8	Yield
T_0	5.37 ±0.17 a	11.65 ± 1.00 a	29.98 ± 1.58 a	111.64 ± 3.22 a	213.39 ± 5.89 a	88.05 ± 1.19 ab
T_6	4.90 ± 0.21 a	9.71 ± 0.82 a	28.17 ±0.11 a	106.26 ± 4.62 ab	217.74 ± 7.67 a	90.02 ± 2.91 a
T_{12}	$4.41 \pm 0.15 \text{ ab}$	$9.59 \pm 0.20 \text{ a}$	$27.70 \pm 0.15 \text{ ab}$	105.20 ± 3.01 ab	203.65 ± 7.27 ab	87.31 ± 0.94 ab
T_{18}	$3.55\pm0.64~\mathrm{bc}$	$7.33 \pm 0.93 \text{ b}$	26.24 ± 1.40 ab	$103.34 \pm 2.19 \text{ b}$	$185.15 \pm 5.89~\mathrm{b}$	$76.00 \pm 3.49 \text{ b}$
T_{24}	$3.17\pm0.38~\mathrm{c}$	$6.61 \pm 0.35 \text{ b}$	$21.57 \pm 0.67 \text{ b}$	$95.51 \pm 5.00 \text{ b}$	$192.57 \pm 3.89~\mathrm{b}$	$77.23 \pm 1.90 \text{ b}$

同列不同字母表示在5%水平上差异显著,下同。

Different letters in the same column mean significant difference among treatments at 5% level. The same below.

2.2 侧向施肥距离对大豆氮、磷、钾吸收的影响

2.2.1 植株¹⁵N 丰度 从表 2 看出, V3 和 R1 期大 豆植株中¹⁵N 丰度随施肥距离增加呈逐渐递减的趋势, T0 与 T6 差异不显著, 但显著高于其他处理; R2 期以后植株中¹⁵N 丰度无明显差异。由此可见,氮肥施入侧向距离种子过远不利于前期植株对肥料氮的吸收;但随着生长发育的进行,根系逐渐伸长,大豆可以吸收利用远处的氮肥。

表 2 侧向施肥对大豆植株¹⁵N 丰度的影响

Table 2 The effect of lateral fertilizer distance on the ¹⁵N content of soybean plant (%)

处理 Treatment	V3	R1	R2	R4	R8
T_0	4.94 ± 0.51 a	2.61 ±0.16 a	1.24 ± 0.03 a	0.62 ± 0.01 a	0.56 ±0.02 a
T_6	4.25 ± 0.35 a	$2.31 \pm 0.11 \text{ ab}$	1.09 ± 0.03 ab	0.60 ± 0.02 a	0.55 ± 0.00 a
T_{12}	$2.93 \pm 0.43 \text{ b}$	$1.72 \pm 0.11~\mathrm{bc}$	1.15 ± 0.03 ab	0.60 ± 0.01 a	0.56 ± 0.03 a
T_{18}	$1.66 \pm 0.37 \text{ b}$	$1.81\pm0.10~\mathrm{bc}$	$1.09 \pm 0.11 \text{ ab}$	0.60 ± 0.01 a	0.55 ± 0.02 a
T_{24}	$2.03 \pm 0.21 \text{ b}$	$1.44 \pm 0.44 \text{ c}$	$1.00 \pm 0.01 \text{ b}$	0.61 ± 0.01 a	0.56 ± 0.01 a

2.2.2 植林 NPK 含量 从表 3 可以看出,大豆 V3 和 R1 期氮磷钾含量均表现为随着侧向施肥距离的增加呈递减的趋势, R1 期氮磷钾含量 T_0 最高,显著

高于其他处理。说明大豆在生长发育前期根系横向伸展范围较小,还不能吸收远处的肥料。至 R2 期氮磷含量 T₂₄与 T₀之间差异已不显著,说明随着

大豆的生长,根系已经可以吸收距离较远的肥料。 R4 期之后随着根系的衰老,不同处理的氮钾含量差 异变小,而磷含量一直表现为近处优于远处。在大 豆整个生育期以种下 6 cm 侧向 0~12 cm 施肥植株 氮磷钾含量较高。

表 3 侧向施肥对大豆植株氮磷钾含量的影响

Table 3 The effect of lateral fertilizer distance on N,P,K content of soybean plants (%)

处理 Treatment		V3	R1	R2	R4	R8
N	T_0	2.810 ±0.196 a	3.182 ±0.133 a	3.331 ± 0.102 a	3.017 ±0.055 a	2.873 ± 0.041 ab
	T_6	2.660 ± 0.055 ab	$2.790 \pm 0.073 \text{ b}$	$2.817 \pm 0.110 \text{ ab}$	$3.109 \pm 0.142 \text{ a}$	2.976 ± 0.059 a
	T_{12}	2.716 ± 0.757 ab	$2.617 \pm 0.099 \ \mathrm{bc}$	$2.768 \pm 0.139 \text{ b}$	3.142 ± 0.068 a	$2.900 \pm 0.024 \text{ ab}$
	T_{18}	2.666 ± 0.116 ab	$2.425 \pm 0.856 \text{ be}$	$2.986 \pm 0.078 \text{ ab}$	2.985 ± 0.026 a	$2.811 \pm 0.042 \text{ b}$
	T_{24}	$2.315 \pm 0.058 \text{ b}$	$2.394 \pm 0.151 \text{ c}$	2.936 ± 0.060 ab	2.953 ± 0.044 a	$2.818 \pm 0.039 \text{ b}$
P	T_0	0.363 ± 0.002 a	0.329 ± 0.005 a	0.304 ± 0.005 ab	0.297 ± 0.002 ab	0.245 ± 0.006 a
	T_6	0.372 ± 0.011 a	$0.306 \pm 0.004~{\rm b}$	0.317 ± 0.008 a	0.307 ± 0.003 a	0.244 ± 0.008 a
	T_{12}	0.355 ± 0.006 a	$0.291 \pm 0.005~\mathrm{b}$	0.311 ± 0.015 a	0.311 ± 0.005 a	$0.217 \pm 0.004~\mathrm{b}$
	T_{18}	0.353 ± 0.007 a	$0.295 \pm 0.008~\mathrm{b}$	$0.280 \pm 0.006~\mathrm{b}$	$0.277 \pm 0.015~\mathrm{b}$	$0.220 \pm 0.003 \text{ b}$
	T_{24}	0.354 ± 0.004 a	$0.291 \pm 0.008~\mathrm{b}$	$0.297 \pm 0.006 \text{ ab}$	$0.219 \pm 0.004 \ {\rm c}$	$0.214 \pm 0.006~\mathrm{b}$
K	T_0	1.414 ± 0.080 a	1.176 ± 0.051 a	0.872 ± 0.013 a	0.616 ± 0.011 a	0.481 ± 0.000 a
	T_6	1.373 ±0.133 a	$0.995 \pm 0.069~\mathrm{b}$	$0.855 \pm 0.058 \text{ ab}$	$0.515 \pm 0.016 \text{ b}$	0.489 ± 0.011 a
	T_{12}	$0.919 \pm 0.048 \text{ b}$	$0.865 \pm 0.050 \ \mathrm{bc}$	$0.753 \pm 0.082 \text{ abc}$	$0.540 \pm 0.023 \text{ b}$	0.491 ± 0.018 a
	T_{18}	$0.803 \pm 0.041 \text{ b}$	$0.747 \pm 0.025 \text{ cd}$	$0.682 \pm 0.023~{\rm bc}$	$0.530 \pm 0.029 \text{ b}$	0.482 ± 0.011 a
	T_{24}	$0.783 \pm 0.009 \text{ b}$	$0.629 \pm 0.022~{\rm d}$	$0.631 \pm 0.068 \ \mathrm{c}$	$0.496 \pm 0.014 \text{ b}$	0.493 ± 0.022 a

2.2.3 植株 NPK 积累 由表 4 可知,由于氮磷钾积累量受大豆植株干物质重的影响较大,与干物质的规律类似,氮磷钾积累量均表现为随着施肥距离

的增加而逐渐减少的趋势。大豆整个生育前期以种下 $6 \text{ cm}(T_0)$ 施肥氮磷钾积累量高,而生育后期种下 6 cm 侧向 $0 \sim 12 \text{ cm}$ 氮磷钾积累量较高。

表 4 侧向施肥对大豆植株氮磷钾积累量的影响

Table 4 The effect of lateral fertilizer distance on the accumulation of N,P,K in soybean plants

处理 Treatment		V3	R1	R2	R4	R8
N/g•frame -1	T_0	0.14 ±0.00 a	0.31 ± 0.00 a	0.83 ± 0.02 ab	3.31 ± 0.07 ab	$6.01 \pm 0.09 \text{ b}$
	T_6	0.13 ± 0.00 a	$0.26 \pm 0.00 \text{ b}$	0.90 ± 0.02 a	3.37 ± 0.06 a	6.46 ± 0.09 a
	T_{12}	0.12 ± 0.01 a	$0.25 \pm 0.01 \text{ b}$	$0.77 \pm 0.09 \text{ be}$	$3.30 \pm 0.15 \text{ ab}$	$5.90 \pm 0.05 \text{ b}$
	T_{18}	0.11 ± 0.01 ab	0.28 ± 0.01 a	$0.74\pm0.03~\mathrm{bc}$	$3.09 \pm 0.03 \text{ b}$	$5.74 \pm 0.12 \text{ b}$
	T_{24}	$0.09 \pm 0.01 \text{ b}$	$0.21\pm0.01~\mathrm{c}$	$0.67 \pm 0.05 \text{ c}$	$2.82 \pm 0.04 \text{ c}$	$5.31 \pm 0.07~\mathrm{c}$
P/mg·frame -1	T_0	18.78 ± 0.20 a	33.86 ± 0.97 a	85.71 ± 1.44 b	331.22 ± 2.78 a	$497.95 \pm 9.20~\mathrm{b}$
	T_6	$16.89 \pm 0.33 \text{ b}$	$28.60 \pm 0.77 \text{ b}$	94.94 ± 2.26 a	328.38 ±4.44 a	532.63 ± 16.13 a
	T_{12}	$15.66 \pm 0.25 \text{ c}$	27.87 ± 0.48 b	86.15 ±4.12 b	326.99 ±4.82 a	$442.84\pm 8.08~{\rm c}$
	T_{18}	$12.53 \pm 0.38 \ d$	$22.42 \pm 0.28 \text{ c}$	73.42 ± 1.66 c	$286.59 \pm 15.63 \text{ b}$	$427.57 \pm 2.84 \text{ cd}$
	T_{24}	11.51 ± 0.08 e	$21.76 \pm 0.32 \text{ c}$	$64.08 \pm 1.34 \text{ d}$	209. 18 ± 3.73 c	$404.79 \pm 4.05 \ \mathrm{d}$
K∕mg•frame ⁻¹	T_0	74.93 ± 4.23 a	137.06 ± 5.93 a	240.93 ± 17.29 a	687.58 ±11.93 a	1016.98 ± 5.74 a
	T_6	67.30 ± 6.54 a	$96.56 \pm 6.74 \text{ b}$	$204.40 \pm 7.00 \text{ ab}$	$547.58 \pm 17.30 \text{ b}$	1059.09 ± 27.73 a
	T_{12}	$40.54 \pm 2.11 \text{ b}$	$82.97 \pm 4.76 \text{ bc}$	228.96 ± 10.54 a	$567.97 \pm 24.48 \text{ b}$	1001.54 ± 35.41 ab
	T_{18}	$28.51 \pm 1.47 \text{ b}$	$74.09 \pm 4.84 \text{ c}$	224.39 ± 15.27 ab	$547.21 \pm 30.16 \text{ b}$	$918.92 \pm 17.97 \text{ b}$
	T_{24}	$32.33 \pm 1.79 \text{ b}$	$41.60 \pm 1.48 \text{ d}$	$188.08 \pm 2.82 \text{ b}$	473.42 ± 13.16 c	914.92 ± 39.97 b

3 讨论

近年来大豆窄行密植栽培技术和"三垄"栽培模式成为黑龙江省主要推广的大豆高产栽培技术^[5-8]。杨方人等^[9]认为大豆"三垄"栽培具有显著的增产效应,其种肥施于垄上12 cm 双行中间;本试

验中施肥于种下 6 cm 侧向 6 cm 处产量最高,佐证了"三垄"栽培的施肥增产效应。

王成^[10]和闫洪睿等^[11]认为,15~16 cm 的行距 产量效果最好;而刘忠堂等^[12]和 Taylor 等^[13]的研 究表明,大豆产量分别以 22.5 和 25 cm 行距的最 高。本试验的研究结果表明,大豆植株干物质积累 及产量随着侧向施肥距离的增加呈逐渐减少的趋势;R4期之前大豆植株干物质积累量以种下6 cm 施肥最高,R8 期干物质积累量及产量以种下6 cm 侧向6 cm 处理最高,在侧向0,6,12 cm 处理间无明显差异。因此,大豆种植行距在0~24 cm 范围,肥料施于两行大豆中间是合理的施肥位置。

张晓雪等[3]认为施肥于种子同层至种下 6 cm 最有利于大豆苗期氮肥吸收,表层施肥、种下 24 cm 施肥处理氮肥吸收效果不好。本试验施用¹⁵N标记 的(NH₄)₂SO₄,研究结果表明施于种下 6 cm 侧向 0~6 cm最有利于大豆开花前对氮肥的吸收,说明 大豆在生长发育前期根系横向伸展范围较小,还不 能吸收远处的肥料。龚振平等[14]研究表明,大豆分 枝期至开花期根系生长迅速,占苗期至鼓粒期总根 量的60%~70%;林蔚刚等[15]认为,大豆根系的根 长、根表面积、根体积及根干重均主要分布于土壤 剖面 0~10 cm 深度;何庸等[16]认为大豆根系水平 分布随生育时期的推移逐渐外移;本研究的结果与 上述学者的结论相吻合,大豆生长发育前期(V3~ R1)植株氮磷钾含量及积累量以种下6 cm施肥处理 最高,中后期(R2~R8)以种下6 cm 侧向0~12 cm 范围内施肥效果较好。

孙广玉等^[17]认为大豆根系干重 85%分布在水平方向的0~12.7 cm,本研究表明施肥于种下6 cm 侧向0~12 cm 处大豆植株氮磷钾吸收和产量均较高,二者结果吻合。

参考文献

- [1] 郭玉. 全方位分层深施肥对大豆生长发育的影响[J]. 黑龙江 八一农垦大学学报,2006,18(4);5-8. (Guo Y. The effect of applying deep fertilizer in the omnibearing lamination on growth and development of soybean[J]. Journal of Heilongjiang August First Land Reclamation University,2006,18(4);5-8.)
- [2] 刘复昌. 大豆化肥施肥部位研究报告[J]. 黑龙江农业科学,1989 (3):30-33. (Liu F C. Research report of fertilization site in soybean [J]. Heilongjiang Agricultural Sciences,1989(3):30-33.)
- [3] 张晓雪,吴冬婷,龚振平,等. 施肥深度对大豆氮磷钾吸收及产量的影响[J]. 核农学报,2012,26(2):178-182. (Zhang X X, Wu T,Gong Z P,et al. Effect of fertilization depth on N,P,K absorption and yield in soybean[J]. Journal of Nuclear Agricultural Sciences,2012,26(2):178-182.)
- [4] Bulle C W, Soper R J, Bailey L D. Phosphorus-nutrition of soybeans as affected by placement of fertilizer phosphorus [J]. Canadian Journal of Soil Science, 1983,63(2):199-210.
- [5] 龚振平. 大豆优质高效生产技术[M]. 哈尔滨: 黑龙江科学技术出版社,2003;212-217. (Gong Z P. Production technology of soybean[M]. Harbin: Heilongjiang Science and Technology Press, 2003;212-217.)
- [6] 王连铮,郭庆元. 现代中国大豆[M]. 北京:金盾出版社,2007: 770-777. (Wang L Z, Guo Q Y. Modern Chinese soybean [M].

- Beijing: Jindun Publishing House, 2007: 770-777.)
- [7] 刘丽君. 中国东北优质大豆[M]. 哈尔滨: 黑龙江科学技术出版社,2007:305-314. (Liu L J. High quality soybeans in Northeast of China[M]. Harbin: Heilongjiang Science and Technology Press, 2007:305-314.)
- [8] 王金陵,杨庆凯,吴宗璞. 中国东北大豆[M]. 哈尔滨:黑龙江科学技术出版社,1999;48-49. (Wang J L, Yang Q K, Wu Z P. Soybean in Northeast China[M]. Harbin; Heilongjiang Science and Technology Press,1999;48-49.)
- [9] 杨方人,赵九洲. 大豆"三垄"法高产技术分析—垄作深松及分层施肥的增产效应[J]. 中国农业科学,1995,28(6):46-51. (Yang F R,Zhao J Z. Analysis of "SAN LONG" high yield technique of soybean—Effect of ridge culture, deep tillage and layer fertilization on increasing soybean yield [J]. Scientia Agricultura Sinica,1995,28(6):46-51.
- [10] 王成. 大豆大垅窄行密植栽培增产效果分析[J]. 大豆通报, 1999(4):11-12. (Wang C. Analysis of effect of big ridge narrow-row solid-seeded high-yield cultivation in soybean [J]. Soybean Bulletin,1999(4):11-12.)
- [11] 闫洪睿,张雷,刘英华,等. 半矮秆大豆黑河 19 号窄行密植研究[J]. 大豆科学,2003,22(3):223-226. (Yan H R, Zhang L, Liu Y H, et al. Study on solid seeding of semidwarf soybean variety Heihe 19[J]. Soybean Science,2003,22(3):223-226.)
- [12] 刘忠堂,何志鸿,魏冀西,等. 大豆窄行密植高产栽培技术引进 试验与嫁接—II 平作窄行密植高产栽培技术的增产效果[J]. 黑龙江农业科学,1998(1):27-29. (Liu Z T, He Z H, Wei J X, et al. Soybean narrow row and compact planting cultivation technique—II Yield increasing effect of flat planting, narrow row and compact planting cultivation technique[J]. Heilongjiang Agricultural Sciences,1998(1):27-29.)
- [13] Taylor H M, Mason W K, Bennie A T P, et al. Response of soybeans to two row spacing and two soil water levels: I. An analysis of biomass accumulation, canopy development, solar radiation interception and components of seed yield [J]. Field Crops Research, 1982,5:1-14.
- [14] 龚振平,沈昌蒲,赵福华. 大豆肥田机制的研究 II 常规技术条件下大豆根系 动态 [J]. 大豆科学,2000,19(4):351-355. (Gong Z P,Shen C P,Zhao F H. Study on mechanism of fertility increase soil by growing soybean II The dynamic changes of soybean roots in soil wider conventional cultural practice [J]. Soybean Science,2000,19(4):351-355.)
- [15] 林蔚刚,吴俊江,董德健,等.不同秸秆还田模式对大豆根系分布的影响[J].大豆科学,2012,31(4):584-588. (Lin W G, Wu J J, Dong D J, et al. Impact of different residue retention system on soybean root distribution in soil profile [J]. Soybean Science, 2012,31(4):584-588.)
- [16] 何庸,孙广玉,程学刚. 草甸黑土中大豆根系及其活性的动态分布[J]. 中国油料,1997,19(2):28-31. (He Y, Sun G Y, Cheng X G. The dynamic distribution of soybean roots and roots activation in meadow black soil[J]. China Oil Crops,1997,19(2):28-31.)
- [17] 孙广玉,张荣华,黄忠文. 大豆根系在土层中分布特点的研究 [J]. 中国油料作物学报,2002,24(1):45-47. (Sun G Y, Zhang R H, Huang Z W. Soybean root distributions in meadow-blackland and albic-soil[J]. Chinese Journal of Oil Crop Sciences,2002,24 (1):45-47.)