水杨酸对低温胁迫下大豆幼苗生长抑制的缓解效应

常云霞1,徐克东2,陈 璨1,陈 龙1

(1. 周口师范学院 生命科学系,河南 周口 466001;2. 周口师范学院 植物遗传与分子育种重点实验室,河南 周口 466001)

摘 要:以中豆-31 为材料,采用水培方法,研究了不同浓度的水杨酸(SA)对 4℃低温胁迫下大豆幼苗生长的影响。 结果表明,低温胁迫下,大豆幼苗叶绿素和可溶性蛋白含量、根系活力显著降低,可溶性糖、游离脯氨酸(Pro)、丙二醛 (MDA)含量以及超氧化物歧化酶(SOD)、过氧化物酶(POD)活性显著提高(P<0.01);外施 SA 显著提高了低温胁迫 下幼苗叶片的叶绿素、可溶性蛋白、可溶性糖和 Pro 含量, SOD、POD 活性和根系活力, 显著降低了膜脂过氧化产物 MDA 含量(P<0.01)。由此可见,外施 SA 可以通过提高大豆幼苗可溶性蛋白、可溶性糖、Pro 含量以及 SOD、POD 活 性来维持细胞膜的稳定性,降低膜脂过氧化伤害程度,从而缓解低温胁迫对幼苗生长的抑制,并以1.5 mmol·L⁻¹外源 SA 效果最好。

关键词:大豆幼苗;低温胁迫;水杨酸;缓解效应

中图分类号:S565.1

文献标识码:A

文章编号:1000-9841(2012)06-0927-05

Salicylic Acid Mitigating the Inhibition of Low Temperature Stress to Soybean Seedlings

CHANG Yun-xia¹, XU Ke-dong², CHEN Can¹, CHEN Long¹

(1. Department of Life Science, Zhoukou Normal University, Zhoukou 466001, Henan; 2. Key Lab of Plant Genetics & Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, Henan, China)

Abstract: Using soybean "Zhongdou-31" as the material, effects of different concentration of salicylic acid(SA) on the growth of soybean seedling under 4°C low-temperature stress was studied by hydroponic culture. Under low-temperature stress, The content of chlorophyll, soluble proteins and the root activity were significantly decreased; the contents of proline, soluble sugar, MDA and the activities of SOD and POD were significantly increased (P < 0.01). When the saybean seadlings were suffered from low-temperature stress for 2 days, exogenous SA significantly increased the contents of chlorophyll, soluble proteins, soluble sugar and proline, the root activity and the activities of SOD and POD, while significantly decreased MDA content (P < 0.01). The results showed that exogenous SA could effectively keep cytomembrane stabilization, and reduce the damage from membrane lipid peroxidation. Hence, mitigate the harmful effects from low-temperature stress on plants, with the optimal concentration of 1.5 mmol·L⁻¹ SA.

Key words: Salicylic acid; Soybean seedling; Low temperature stress; Mitigative effect

温度对植物的生长发育有重要影响,低温不仅 影响大豆等作物的产量,而且极大地限制了这些作 物的分布与应用。在大豆的各个生育阶段都易出 现低温冷害,在萌发初期及幼苗期对低温尤为敏 感[1]。水杨酸(Salicylic Acid,SA)是植物中广泛存 在的一种简单酚类化合物,化学名称为邻羟基苯甲 酸,它能够激活植物过敏反应和获得系统抗性[2-3], 参与调节植物的许多生理过程。近年来的研究证 明,SA 能提高植物对环境胁迫(如低温、热、干旱、 盐等)的抗性[4-7]。目前,关于采用外源 SA 来缓解 低温胁迫对大豆幼苗伤害的研究鲜有报道。本研 究了 SA 对低温胁迫下大豆幼苗叶绿素、可溶性糖、 可溶性蛋白、游离脯氨酸(Pro)、丙二醛(MDA)含 量、根系活力及 SOD、POD 酶活性的影响,以探讨 SA 诱导提高大豆抗寒能力的机制,为 SA 在大豆生 产中的应用提供理论依据。

材料与方法

1.1 试验设计

供试材料为中豆-31,由周口市种子公司提供。 取粒大饱满的大豆种子,用 0.1% HgCl2表面消毒 7 min,去离子水反复冲洗,在30℃的去离子水中浸 泡 48 h 后将大豆种子均匀播种于加有 2 层纱布的 300×200×50 mm 的托盘中,每盘 60 粒,播种 18 盘,每天上午9点、下午5点加入50 mL处理液,使 纱布保持湿润,处理液为不同浓度的(0、0.5、1.0、 1.5、2.0 mmol·L⁻¹)SA溶液,每个浓度重复3次,培 养室为恒温 25℃,光照强度 4 000~4 500 lx,光/暗

收稿日期:2012-07-24

基金项目:河南省教育厅自然科学研究计划资助项目(2011B180057);周口师范学院生物化学与分子生物学重点学科建设项目。

第一作者简介:常云霞(1978-),女,硕士,讲师,主要从事植物抗性牛理研究。E-mail:changyx618@126.com。

通讯作者: 陈龙(1962-), 男, 教授, 主要从事生物化学与分子生物学研究。E-mail: chenlongzg@126. com。

周期为 14 h/10 h。待长出 2 片复叶时将大豆幼苗 放入光照培养箱 (LRH-250-G 型) 内进行低温胁迫 处理 2 d。温度设定为 4 °C,光/暗周期为 14 h/10 h,光照强度为 4 000 lx。同时以常温生长且用去离子水培养的幼苗作为对照。

1.2 测定项目与方法

低温胁迫 2 d 后随机取幼根根尖和新全展叶的中间小叶,去离子水反复冲洗,剪碎、混匀,采用丙酮乙醇提取法测定叶绿素含量^[8];考马斯亮蓝 G-250 法测定可溶性蛋白含量^[9];蒽酮比色法测定可溶性糖含量^[8];硫代巴比妥酸(TBA)法测定 MDA 含量^[10];磺基水杨酸浸提法测定 Pro 含量^[11];氮蓝四唑法测定 SOD 活性^[12];愈刨木酚法测定 POD 活性^[11];氯化三苯基四氮唑(TTC)法测定根系活力^[10]。

1.3 数据分析

所有数据均取 3 次重复的平均值,采用 Microsoft Excel 2003 和 SPSS 10.0 进行数据分析和差

异显著性检验。

2 结果与分析

2.1 SA 对低温胁迫下大豆幼苗叶片内叶绿素含量 的影响

叶绿素作为光合色素参与光合作用中光能的吸收、传递和转化,在植物光合作用中起着关键性的作用 $^{[13]}$ 。由表 1 可知,大豆幼苗叶片中叶绿素 a 叶绿素 b、总叶绿素含量变化基本相似,低温胁迫下均极显著(P < 0.01)降低。外施 SA 后,叶绿素含量随着 SA 处理浓度的增加呈先增加而后略微降低的趋势。SA 处理有效地提高了低温胁迫下大豆幼苗叶片叶绿素含量,积累更多的光合产物,可以为大豆幼苗生长提供更多的营养物质。各处理以 1.5 mmol· L^{-1} 处理效果最好,与0 mmol· L^{-1} 处理相比,叶绿素含量极显著(P < 0.01)增加(37.1%)。

表 1 SA 对低温胁迫下大豆幼苗叶绿素含量的影响

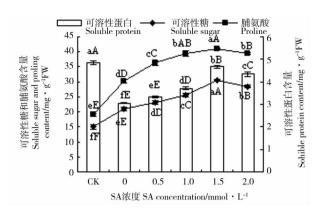
Table 1 Effects of exogenous SA on chlorophyll content of soybean seedlings under low temperature stress

叶绿素含量 Chlorophyll content/mg·g ⁻¹	SA 浓度 SA concentration/mmol·L ⁻¹					
	СК	0	0.5	1.0	1.5	2.0
叶绿素 a Chlorophyll a	3.31aA	2.00eC	2.23beBC	2.41bBC	2.54bB	2.44bBC
叶绿素 b Chlorophyll b	1.15aA	$0.56\mathrm{dD}$	0.73cCD	0.83bcBC	0.97bAB	0.88bcBC
总叶绿素 Total chlorophyll	4.46aA	2.56dC	2.99cBC	3.24bcB	3.51bB	3.31bcB

同行数值后不同大小写字母分别代表在0.01和0.05水平差异显著。

Values in the same line followed by different capital and lowercase letters were significant different at 0.01 and 0.05 probability level, respectively, the same below.

2.2 SA 对低温胁迫下大豆幼苗可溶性蛋白、可溶性糖和 Pro 含量的影响


植物体内的可溶性蛋白大多数是参与各种代谢活动的酶类,其含量的高低可以衡量植物体对逆境的适应能力 $^{[14]}$ 。图 1 表明,低温胁迫 2 d 后与CK 相比大豆幼苗可溶性蛋白含量极显著(P < 0.01)降低,外施不同浓度的 SA 后,大豆幼苗叶片中可溶性蛋白含量显著增加,并随 SA 浓度增加呈先增加后略微下降的趋势,其中以 $1.5\,\,\mathrm{mmol}\cdot\mathrm{L}^{-1}\mathrm{SA}$ 处理效果最好,可溶性蛋白含量与 $0\,\,\mathrm{mmol}\cdot\mathrm{L}^{-1}\mathrm{SA}$ 处理相比提高 52.99%,接近 CK,并且各个浓度 SA 处理与 $0\,\,\mathrm{mmol}\cdot\mathrm{L}^{-1}\mathrm{SA}$ 处理相比可溶性蛋白含量均极显著(P < 0.01)增加。结果表明适宜浓度的 SA 能够有效提高低温胁迫下大豆幼苗的可溶性蛋白含量。

可溶性糖和 Pro 作为渗透保护物质可提高细胞液的浓度,增加细胞持水组织的非结冰水,从而降低细胞质的冰点[15-16]。图 1 表明,低温胁迫2 d后与

CK 相比大豆幼苗可溶性糖和 Pro 含量均极显著 (P<0.01)增加,在一定程度上缓解了低温对大豆造成的伤害,外施不同浓度的 SA 后,大豆幼苗叶片中可溶性糖与 Pro 含量均极显著(P<0.01)增加,与0 mmol·L⁻¹SA 处理相比可溶性糖含量分别提高了10.27%、22.06%、45.27%、35.76%, Pro 含量分别提高了36.23%、39.52%、41.04%、39.39%。说明适宜浓度的 SA 能显著提高低温胁迫下大豆幼苗的可溶性糖和 Pro 含量,增强其对低温胁迫的适应性。

2.3 SA 对低温胁迫下大豆幼苗 MDA 含量和根系 活力的影响

根系作为植物重要的吸收器官和代谢器官,其生长发育直接影响地上茎叶的生长和作物产量的高低^[17]。图 2 表明,低温胁迫 2 d 后与 CK 相比大豆幼苗根系活力极显著(*P*<0.01)降低,外施不同浓度的 SA 后,大豆幼苗根系活力显著增强,并随着SA 浓度增加呈先增加后略微下降的趋势,其中以

不同大小写字母分别代表各处理间在 0.01 和 0.05 水平差 异显著性,下图同。

Different capital and lowercase letters were significant different at 0.01 and 0.05 probability level, respectively, the same below.

图 1 SA 对低温胁迫下大豆幼苗叶片内可溶性糖、 脯氨酸及可溶性蛋白含量的影响

Fig. 1 Effects of exogenous SA on soluble sugar, protein and proline content in seedling leaves under low temperature stress

1.5 mmol·L⁻¹ SA 处理效果最好,根系活力与 0 mmol·L⁻¹ SA 处理相比提高 60.55%,接近 CK,并且各个浓度 SA 处理与 0 mmol·L⁻¹ SA 处理相比根系活力均极显著(P < 0.01)增加。结果表明 SA 能够有效的提高低温胁迫下大豆幼苗的根系活力。

MDA 是膜脂过氧化的产物,其含量的变化可以衡量植物受伤害的程度^[18]。图 2 表明,低温胁迫 2 d 后与 CK 相比 MDA 含量极显著 (P < 0.01) 增加,说明低温对大豆幼苗伤害程度很深,而外施不同浓度 SA 后,MDA 含量随 SA 浓度增加显著下降,并随着 SA 浓度增加呈先下降后略微升高的趋势,与0 mmo·L⁻¹SA 处理相比 MDA 含量极显著 (P < 0.01)下降了 16.7%、26.77%、36.69%、31.13%。

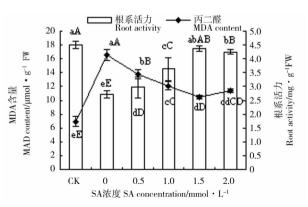


图 2 SA 对低温胁迫下大豆幼苗根系活力和 叶片内 MDA 含量的影响

Fig. 2 Effects of exogenous SA on root activity and MDA content in seedling leaves under low temperature stress

说明 SA 能有效降低低温胁迫对大豆幼苗细胞膜脂的过氧化程度,从而减轻低温胁迫伤害。

2.4 SA 对低温胁迫下大豆幼苗 SOD 及 POD 活性 的影响

SOD 和 POD 是细胞内自由基清除系统中的关键性酶,在保护细胞器免遭活性氧损害中起到至关重要的作用。图 3 表明,与 CK 相比低温导致叶片内 SOD、POD 活性极显著(P<0.01)增加,外施不同浓度 SA 后,SOD 与 POD 活性均又极显著(P<0.01)增加,并随着 SA 浓度增加呈先增加后略微降低的趋势,与0 mmo·L⁻¹SA 处理相比 SOD 活性分别增加了 8.7%、26.09%、34.78%、15.22%,POD 活性分别增加了17.39%、36.96%、56.52%、45.65%。说明 SA 能有效增加低温胁迫下大豆幼苗清除体内自由基的能力,从而减轻低温胁迫伤害。

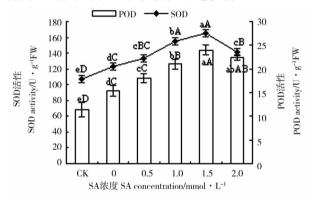


图 3 SA 对低温胁迫下大豆幼苗叶片内 SOD 与 POD 活性的影响

Fig. 3 Effects of exogenous SA on SOD and POD activity in seedling leaves under low temperature stress

3 讨论

高等植物代谢过程中活性氧(ROS)的产生是 不可避免的,正常生理条件下,植物体内的抗氧化 系统能协同作用,使细胞中 ROS 维持在正常水平。 当植物处于低温胁迫时,这种平衡遭到破坏,导致 ROS 累积,这些 ROS 直接攻击细胞膜脂并引发过氧 化加剧,促使膜脂中不饱和脂肪酸过氧化并产生 MDA, MDA 能与酶蛋白发生链式反应聚合, 使膜系 统变性,造成膜的损伤和破坏,膜系统的完整性丧 失,生物功能分子遭到破坏[19-20]。ROS 的积累导致 丙二醛含量明显提高,加速了对植物的伤害。本试 验中,低温胁迫下,大豆幼苗体内 MDA 含量增加, 说明大豆幼苗体内的 ROS 大量积累,使细胞膜受到 伤害。为了防御 ROS 的毒害,植物体内存在清除这 些 ROS 的酶促反应系统, SOD 可清除 O₂, POD 具 有分解 H,O,的作用,生成没有毒害的 H,O。本试验 结果表明,低温胁迫下,大豆幼苗叶片中 SOD、POD 活性增强,并且 SA 处理使两种酶活性进一步增强,这与田丹青等^[21]的研究结果一致,证明了 SA 能诱导抗氧化酶的生成,及时清除 ROS 的积累,减少MDA 的生成,从而减轻对植物的伤害。

植物中的叶绿素是影响光合效率的重要因素,是衡量植物对逆境胁迫敏感性的重要指标。许多研究证明,低温胁迫导致叶绿素含量下降^[19,22],其中叶绿素 a 的减少不利于色素分子收集的光能转换成电能,过剩的光能又可诱导新自由基的产生和色素分子的光氧化^[20]。本试验中,低温胁迫下叶绿素含量降低。SA 处理导致叶绿素含量增加,这可能是由于在 SA 诱导下,POD、SOD 活性提高,清除了体内过多的 ROS,使膜脂过氧化减弱,MDA 含量减少,一定程度上缓解了对生物大分子的攻击。叶绿素含量的增加利于提高光合效率,积累较多的光合产物,进一步提高植物的抗冷性。

根系活力是指整个根系的代谢状况,是反映根系吸收营养元素和水分能力的一个重要指标,根系活力强,则吸收能力强,提供给植株地上部的养分和水分也多^[23]。许多研究证明,低温胁迫使作物的根系活力减弱,降低根系的吸收能力^[24-25]。本试验中,低温胁迫下大豆根系活力减弱,外施 SA 后,根系活力有所升高,从而有利于大豆对水分和养分的吸收,增强对低温环境的的抵抗能力。

可溶性蛋白含量的提高可以增加细胞的渗透势和功能蛋白的数量,有助于维持细胞正常的代谢,提高植物的抗逆性^[26]。可溶性糖和脯氨酸作为细胞调节物质和细胞渗透物质,可保持植物受环境胁迫时的渗透压,还参与植物体内氧自由基的清除^[27]。在逆境胁迫下可溶性糖和脯氨酸会大量积累,有利于抗逆性增强。本研究表明,在低温胁迫下,适宜浓度的 SA 处理可使大豆幼苗叶片可溶性蛋白、可溶性糖以及脯氨酸含量增加,说明 SA 能增强大豆幼苗的抗低温胁迫的能力。

综上所述,低温对大豆幼苗有一定的伤害作用。外施 SA 后,使大豆幼苗根系活力提高,并使大豆幼苗叶片的叶绿素、可溶性蛋白、可溶性糖和脯氨酸含量增加,同时能诱导大豆幼苗抗氧化酶的产生,并调节其活性,降低 ROS 的积累,使 MDA 含量降低,减轻对生物大分子的攻击,消除或缓解氧化损伤,减轻低温对大豆幼苗的伤害作用。并以 1.5 mmol·L⁻¹外源 SA 缓解效果最好。

参考文献

[1] 张大伟,杜翔宇,刘春燕,等. 低温胁迫对大豆萌发期生理指标的影响[J]. 大豆科学,2010,29(2):228-232. (Zhang D W, Du

- H Y, Liu C Y, et al. Effect of low-temperature stress on physiological Indexes of soybean at germination stage[J]. Soybean Science, 2010, 29(2):228-232.)
- [2] 王玉萍,董雯,张鑫,等. 水杨酸对盐胁迫下花椰菜种子萌发及 幼苗生理特性的影响[J]. 草业学报,2012,21(1):213-219. (Wang Y P,Dong W,Zhang X, et al. Effects of salicylic acid on seed germination and physiological characters of cauliflower seedlings under salt stress[J]. Acta Prataculturae Sinica, 2012,21 (1):213-219.)
- [3] 刘杰,杨絮茹,方婧,等. 水杨酸对植物抗旱性的影响[J]. 黑龙 江农业科学,2008(4):135-137. (Liu J, Yang X R, Fang J, et al. Effect of SA on drought resistance of plant[J]. Heilongjiang Agricultural Sciences,2008(4):135-137.)
- [4] 初敏,王秀峰,王淑芬,等. 外源 SA 预处理对低温胁迫下萝卜 幼苗的生理效应 [J]. 西北农业学报,2012,21(2):142-145, 183. (Chu M, Wang X F, Wang S F, et al. Physiological effects of exogenous salicylic acid on radish seedlings under low temperature stress [J]. Acta Agriculturae Boreali-occidentalis Sinica,2012,21 (2):142-145,183.)
- [5] 吕俊, 张蕊, 宗学凤, 等. 水杨酸对高温胁迫下水稻幼苗抗热性的影响[J]. 中国生态农业学报, 2009, 17(6):1168-1171. (Lü J, Zhang R, Zong X F, et al. Effect of salicylic acid on heat resistance of rice seedling under heat stress[J]. Chinese Journal of Eco-Agriculture, 2009, 17(6):1168-1171.)
- [6] 孙歆,曾富春,胡攀. 水分胁迫下水杨酸对大麦幼苗抗氧化能力的影响[J]. 四川农业大学学报,2011,29(2):160-163,206. (Sun X,Zeng F C, Hu P. Effects of salicylic acid on the antioxidant activity of barley seedlings under water stress[J]. Journal of Sichuan Agricultural University,2011,29(2):160-163,206.)
- [7] 张林青. 水杨酸对盐胁迫下番茄幼苗生理指标的影响[J]. 北方园艺,2011(21):36-38. (Zhang L Q. The effects of SA on the physiological index of tomato seedlings[J]. Northern Horticulture, 2011(21):36-38.)
- [8] 邹琦. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2000. (Zou Q. Plant physiology experimental direction[M]. Beijig; China Agriculture Press, 2000.)
- [9] 王学奎. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社,2006. (Wang X K. Plant physiology and biochemistry experiment: principle and technology[M]. Beijing: Higher Education Press,2006.)
- [10] 张志良. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2003. (Zhang Z L. Plant physiology experimental direction[M]. Beijing: Higher Education Press, 2003.)
- [11] 刘萍,李明军. 植物生理学实验技术[M]. 北京:科学出版社, 2008. (Liu P, Li M J. Plant physiology experimental technology [M]. Beijing: Science Press, 2008.)
- [12] 李合生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社,2003. (Li H S. Plant physiology and biochemistry experiment: principle and technology [M]. Beijing: Higher Education Press,2003.)
- [13] 李植,秦向阳,王晓光,等. 大豆/玉米间作对大豆叶片光合特性和叶绿素荧光动力学参数的影响[J]. 大豆科学,2010,29 (5):808-811. (Li Z,Qin X Y,Wang X G, et al. Effect of intercropping with maize on photosynthesis and chlorophyll fluorescence parameters of soybean [J]. Soybean Science, 2010, 29 (5):

808-811.)

- [14] 武广衍,邱德文,杨秀芬,等. 新型真菌源激活蛋白对大豆幼苗 生理特性的影响[J]. 大豆科学,2007,26(5):691-694. (Wu G Y,Qiu D W,Yang X F, et al. Effects of new fungal activator protein on physiological characters of soybean[J]. Soybean Science, 2007,26(5):691-694.)
- [15] 朱月,赵雪梅,唐立红. 低温对几种引种紫斑牡丹叶片可溶性糖含量的影响[J]. 北方园艺,2012(2):62-64. (Zhu Y,Zhao X M,Tang L H. Effects of low temperature on soluble polysaccharide in leaves of several introduced paeonia rockii[J]. Northern Horticulture,2012(2):62-64.)
- [16] 杨卫民,刘宝琦,张世珍,等. 甘露醇、过氧化氢和氯化钠处理对黑豆苗期抗旱性的影响[J]. 大豆科学,2010,29(2):350-353. (Yang W M, Liu B Q, Zhang S Z, et al. Effect of mannitol, hydrogen peroxide and chloride treatment on drought resistance of black soybean seedling [J]. Soybean Science, 2010, 29(2): 350-353.)
- [17] 王红星,纪秀娥,陈晓君,等.水杨酸对废电池胁迫下绿豆幼苗 抗氧化酶活性及生理特性的影响[J]. 农业环境科学学报, 2011,30(3):429-434. (Wang H X, Ji X E, Chen X J, et al. Effect of salicylic acid on antioxidant system of mungbean (vigna radiate) seedling under used batteries stress[J]. Journal of Agro-Environment Science, 2011, 30(3):429-434.)
- [18] 钱琼秋,宰文珊,朱祝军,等. 外源硅对盐胁迫下黄瓜幼苗叶绿体活性氧清除系统的影响[J]. 植物生理与分子生物学学报, 2006,32(1):107-112. (Qian Q Q, Zai W S, Zhu Z J, et al. Effects of exogenous silicon on active oxygen scavenging systems in chloroplasts of cucumber(*Cucumis sativus* L.) seedlings under salt stress[J]. Journal of Plant Physiology and Molecular Biology, 2006,32(1):107-112.)
- [19] 孙富,杨丽涛,谢晓娜,等. 低温胁迫对不同抗寒性甘蔗品种幼苗叶绿体生理代谢的影响[J]. 作物学报,2012,38(4):732-739. (Sun F, Yang L T, Xie X N, et al. Effect of chilling stress on physiological metabolism in chloroplasts of seedlings of sugarcane varieties with different chilling resistance [J]. Acta Agronomica Sinica,2012,38(4):732-739.)
- [20] 潘瑞炽. 植物生理学[M]. 北京:高等教育出版社,2008. (Pan

- R C. Plant physiology [M]. Beijig; Higher Education Press, 2008.)
- [21] 田丹青,葛亚英,刘晓静,等.叶面喷施水杨酸对红掌植株抗寒性的影响[J]. 浙江农业学报,2011,23(2):304-308. (Tian D Q, Ge Y Y, Liu X J, et al. Effect of spraying salicylic acid on chilling resistance of *Anthurium*[J]. Acta Agriculturae Zhejiangensis, 2011,23(2):304-308.)
- [22] Kratsch H A, Wise R R. The ultrastructure of chilling stress [J]. Plant Cell & Environment, 2000, 23;337-350.
- [23] 王晓光,曹敏建,王伟,等. 钾对大豆根系形态与生理特性的影响[J]. 大豆科学,2005,24(2):126-129,134. (Wang X G, Cao M J, Wang W, et al. Effects of potassium concentration in the soil on the morphological and physiological characteristics of soybean root [J]. Soybean Science, 2005,24(2):126-129,134.)
- [24] 和红云,薛琳,田丽萍,等. 低温胁迫对甜瓜幼苗叶绿素含量及 荧光参数的影响[J]. 北方园艺,2008(4):13-16. (He H Y, Xue L,Tian L P, et al. Effect of low-temperature stress on the chlorophyll contents and chlorophyll fluorescence parameters in muskmelon seedling leaves [J]. Northern Horticulture, 2008(4): 13-16.)
- [25] 韩悟祖,陈修斌,杨彬,等. 低温逆境下温室茄子专用品种的筛选[J]. 北方园艺,2009(3):141-143. (Han W Z, Chen X B, Yang B, et al. Low temperature under the adversity of greenhouse eggplant varieties for the screening[J]. Northern Horticulture, 2009(3):141-143.)
- [26] 刘大伟,段玉玺,陈立杰,等. 灰皮支黑豆抗大豆胞囊线虫 3 号生理小种的生理机制[J]. 大豆科学,2010,29(3):471-473.

 (Liu D W, Duan Y X, Chen L J, et al. Physiological mechanism of Huipizhiheidou resistant to race 3 of soybean cyst nematode[J]. Soybean Science,2010,29(3):471-473.)
- [27] 栾晓燕,陈怡,杜维广,等. 不同抗性大豆品种(系)感染 SMV 后可溶性糖和游离氨基酸的研究[J]. 大豆科学,2000,19 (4):356-361. (Luan X Y, Chen Y, Du W G, et al. Studies on soluble sugar and free amino acid in plants of different soybean cultivars infected by SMV [J]. Soybean Science, 2000, 19 (4): 356-361.)

(上接第926页)

- [10] 闫春娟,韩晓增,王守宇,等. 水钾耦合对大豆干物质积累和产量的影响[J]. 大豆科学,2007,26(6):862-867. (Yan C J, Han X Z, Wang S Y, et al. Effect of water-potassium coupling on dry matter accumulation and yield of soybean [J]. Soybean Science, 2007,26(6):862-867.)
- [11] 胡继超,曹卫星,姜东,等. 小麦水分胁迫影响因子的定量研究 I. 干旱和泽水胁迫对光合、蒸腾及干物质积累与分配的影响 [J]. 作物学报,2004,30(4);315-320. (Hu J C, Cao W X, Jiang D, et al. Quantification of water stress factor for crop growth simulation I. Effects of drought and waterlogging stress on photosynthesis, transpiration and dry matter partitioning in winter wheat [J]. Acta Agronomica Sinica,2004,30(4);315-320.)
- [12] 廖红,严小龙. 低磷胁迫下菜豆根构型性状的 QTL 定位[J]. 农业生物技术学报,2000,8(1):67-70. (Liao H, Yan X L. Molecular mapping of QTLs conferring root architecture of common

- bean in response to phosphorus deficiency [J]. Journal of Agricultural Biotechnology, 2000, 8(1):67-70.
- [13] Rubio G, Walk T, Ge Z. Root gravitropism and below-ground competition among neighbouring plants; a modeling approach [J]. Annals of Botany, 2001, 88:929-940.
- [14] 刘丽君,林浩,唐晓飞,等. 干旱胁迫对不同生育阶段大豆产量 形态建成的影响[J]. 大豆科学,2011,30(3):405-411. (Liu L J,Lin H,Tang X F, et al. Drought stress influence soybean yield morphogenesis in different growth stages [J]. Soybean Science, 2011,30(3):405-411.)
- [15] 李博,王刚卫,田晓莉,等. 不同干旱方式和干旱程度对玉米苗期根系生长的影响[J]. 干旱地区农业研究,2008,26(5):148-151. (Li B,Wang G W,Tian X L, et al. Effects of different drought manners and different water availabilities on root growth of maize (Zea mays) seedlings[J]. Agricultural Research in the Arid Areas,2008,26(5):148-151.)