5 刀

1988年

大豆砌素营养的调查研究

董 玉 琴 孙 运 岭

(吉林省农业科学院大豆研究所*)

A STUDY ON THE EFFECT OF BORONE ON THE SOYBEAN

Dong Yuqin Shun Yunling

(Soubean Institute, Jilin Academy of Agricultural Sciences)

据研究⁽¹⁾形成 50kg 大豆籽实需 要 砌 3.97g,高于禾本科作 物 2 — 3 倍,砌 素 在 农田的生物循环中,每年每亩亏损 0.77—1.75 g。另也有报告⁽²⁾砌 对大豆是低反 应 作 物。1984—1986 年调查⁽³⁾ 吉林省在农田中不同类型土壤中均存在缺砌的土壤,因 而 研 究大豆施砌实际应用的可能性成为本项工作的目的。通过田间调查试验,室内分析等方 法,对大豆砌素营养的现状、施砌的效果、施砌技术、施砌对大豆株体营养状况的影响 等进行调查研究。

一、吉林省硼素营养的现状

1984年于大豆开花初期,在吉林省东部的敦化、蛟河,中部的榆树、公主岭,西部的长岭采集充分发育成熟的顶端三出复叶叶片,进行砌的含量分析,调查采样田块大豆产量水平为亩产 113.5—193.5 kg,从 表 1 结果看出蛟河县池水、敦化市大桥、长岭县流水三个点的含量属于低量级(4) 在 11—20PPM,敦化市太平岭、公主岭院内试验田、榆树县弓棚子三个点含量属于充足级在 26—36 PPM,平均 31 PPM,当 增施化肥后叶片中砌的含量,除院内试验田没增加外,其它点均有不同程度的增加,增加幅度为 2—20PPM,平均增加 14PPM。在蛟河县池水乡调查五块亩产193.5—251.0kg的高产田大豆叶片砌含量为18—28PPM,平均 21PPM砌素营养状况亦属较低水平。

此外,发现土壤有效硼含量与叶片硼含量有关,从表 1 结果看出:除院内一点外,蛟河县池水、敦化市大桥、长岭县流水三点土壤均属缺硼^[5] 低于 0.50PPM,叶片中硼的含量属低量级。在11—20PPM,敦化市太平岭、榆树县弓棚子两点土壤含有效 硼 属中量级 0.56—0.92PPM,叶片中硼含量在 26—32PPM 为充足级,相应的含量也高。

二、大豆施硼的效果

1. 硼肥对大豆的增产作用

1984-1985年在中部黑土、东部白浆土及冲积土、西部淡黑钙土上进行田间试验,

^{*} 本项工作有软化、永吉、榆树、前部、长岭等县农业技术点站及有关乡站同志参加工作。 本文于1987年7月23日收到。This paper was received in July 23, 1987。

表 1 大豆开花初期成熟叶片硼素含量及土壤有效硼含量 单位: PPM

Table 1 The B content of the mature leaves in soybeans initial blooming

stage and the content of available B in the soil unit: ppm

类型 Types 調査地址 Investigation	未施化肥 No chemical fertilizer	施 化 肥 Apply chemical fertilizer	土壤基本肥力有效硼 B in soil Available
蛟河县池水乡 Jiaohe County Chisaui Village	20	26	0.48
敦化市大桥乡 Dunhua City Daqino Village	1!	59	0.06
敦化市太平龄乡 Dunhu a City T aipingling V ill a ge	26	28	0.92
院内试验田 Gongzuling experi mental plot	32	30	0.16
榆树县弓棚乡 Yusha County Gongpeng Village	36	_	0.56
长岭县流水乡 Changling County Liushui Village	18	38	0.48

^{*} 植株分析方法为硝酸过氯酸消化,原子吸收分光光度计测定

Plant analysis methods: Diquestion with aitricand and supeichloric acid; measuring with spectro-photometer.

土壤有效硼分析方法为沸水浸提甲亚胺比法

Methods for analysis of availability of soil Bisoaked and leached with boiling water: measured by methylenimine colvrimetric method.

小区面积为 28.8㎡ (8m×3.6m),三次重复。1986 年 进行多点大面积对比示范试验,每亩地用250—500g 砌砂与 30—50 倍细土混匀,播种时做底肥施用,以不施砌为对照,产量结果如表 2 ,三年四种土壤类型70个试验结果中有 7 个点减产占10%,余90%的点增产,幅度为2.0—64.4%,平均增产14.7%,每亩增收大豆 19.4kg,其中,以白浆土增产最多,平均增产18.3%,每亩增收大豆21.5kg,淡黑钙土其次,平均增产17.4%,每亩平均增收大豆20kg;黑土第三,平均增产 11.0%,每亩增收大豆 17kg;冲积土第四,增产7.6%,每亩增收大豆 13.5kg。

2. 大豆施硼增产构成因素

构成增产的有效因素在于缺硼土壤施硼后,生育期间有促进营养生产的作用,表现在株高、茎粗、叶长、叶宽都比不施硼的占优势,同时,根瘤数目增加,营养生长的优势能延续至生育后期,成熟期考种结果仍可看出株高、茎粗、节数都占优势。由于营养生长良好和硼对生殖器官的特殊作用,促进花荚形成,施硼单株产量增加10.0一84.9%(表 3)平均增加26.2%。其中,一方面是荚数增加11.8一72.1%,平均增加22.0%,同时,百粒重也略有增加,增加幅度为1.0一8.8%,平均增加4.1%,每百粒增重0.77g,此外,发现施硼植株至成熟仍为活体,落叶晚3天左右,这对大豆的生育是有利的、鼓粒期籽粒成熟的晚,但到收获期能正常成熟。

3. 施硼对大豆硼素营养状况的影响

表2 大豆施硼对产量的影响 Table 2 Effect of B application on soybean yield

单位: 亩·公斤 unit: mu·kg

	I abje	2 2	rect of B	application of	n soybean y	rieja unit	mu · kg		
项目	年份	点数*1	未施产量	增产量 Incr	eased yield	增产% Increased %			
土 Items 填 Soil types	Years	Sites	Yield of unapply B fertilizer	幅 度 Range	平 均 Mean	幅 度 Range	平 均 Mean		
`	1984	+ 1	115,0	57	57	49.6	49.6		
白 浆 土	1985	+ 2	126.5	13-50	31.5	10.0-40.8	25.4		
	1986	+21	147.0	8—63	20.5	4.0-53.3	16.1		
Les s ive	1986	- 3	227.5	-4- -72.5	-37.0	-2.128.5	-19.2		
	平均*2	+24	144.0	863	21.5	4.0-53.3	18.3		
	1984	+ 3	123.0	6.5-12.5	9.5	5.1—16.7	9.3		
淡黑钙土	1985	+ 3	90.0	4.5-21.5	12.0	6.9-36.1	16.6		
Black calcium	1986	+ 9	142.0	12.0-71.5	26.0	6.8-64.4	20.3		
soil	1986	- 1	168.5	-2.5	-2.5	-1.5	-1.5		
son	平均	+15	128.0	4.5-71.5	20.0	5.1-64.4	17.4		
	1984	+ 2	112.5	11.5-44.0	28.0	10.1-39.6	24.9		
濕 土	1985	+ 3	141.5	3.5-19.0	18.0	2.5—11.1	6.7		
	1985	- 1	89.5	-15.5	-15.5	-18.4	-18.4		
Black soil	1986	+ 8	159.5	4.0-46.5	17.5	2.1—24.9	9.2		
	平均	+13	170.0	3.5-46.5	17.0	2.0-39.6	11.0		
	1984	- 2	206.0	-6.515.0	-11.0	-2.9-8.4	-5.7		
神 积 土	1985	+4	168.5	6.5-30.1	15.5	4.5—17.4	8.7		
Alluvial so:l	1986	+7	176.0	1.5- 22.5	12.0	2.6—13.0	6.9		
	平均	+11	169.0	1.5-31.0	13.5	2.6-17.4	7.6		

^{*1} 十为增产点效, 一为减产点数 "+" is sites of yield increase "-" is site of yield reducetion,

^{*?} 为三年增产点数的平均 *2 is the mean value of increased sites for three years.

表 3 施 硼 增 产 性 状 构 成 因 素 Table 3 Effects of B application on the increase of yield factors of soybean

n I	年度	处理	No. of				\$ 株 粒 嶞 o. of seeds per p!ant			百粒重 Weight of 100 seeds		
Items 地 地 Areas	Years	Treat- ment	个/株 No./。plant	增加 Incre- ment	<i>%</i>	克/株 g/plant	增加 Incre- ment	 %	克 g	增加 Incre- ment	Go	
敦化市大桥 Dunhva city Daqiao	1985	施硼未施	38.2	16.0	72.1	17.2 9.3	7.9	84.9	18.5 17.1	-	8.	
较化市15点平均 Danhua city mean of 15 points	1986	施硼	24.5	5.1	26.2	9.4	2.5	36.2	19.6	0.8	4.:	
渝 祷 县 环 城 Yhshu county Huancheng	1985	施爾未施	30.9	6.6	27.2	11.0	1.0	10.1	18.7	0.3	1.0	
榆村县12点平均 Yushu county mean of 12 points	1986	施硼米施	36.8 32.8	4.0	12.2	17.9	2.4	15.6	21.1	0.9	4.5	
永古县乌拉街 Yongji county Wulazi	1985	施爾 未施	79.0 58.0	21.0	33.2	33.8	11.1	48.9	19.6	0,9	4.5	
永吉县 8 点平均 Yongji county mean of 8 points	1986	施硼末施	35.1	3.7	11.8	15.8	2.1	15.3	21.2	0.2	1.0	

表4 施硼对大豆植株各部位硼钙含量的影响

单位: PPM

Table 4 Effect of B application on the B content in different soybean plant parts

unit: PPM

处 理 '	Treatment	施硼	Apply B	未 施	No B
	项 目 Items	Ca	В	C	В
平祥 部位		Ca	а	Ca	, D
Sampline Position					
	1 — 3 片	2370	22	2198	18
叶顶 Leaf tip	4-6片	2437	34	2417	30
	7 — 9 片	2279	34	1927	45
	1-3片	2324	9	2027	24
时何顶 Potiole tip	4-6片	2291	10	2271	14
	7 — 9 15	1985	17	2041	16
茎 Stem		678	1.2	661	19
荚皮 Pod shell		665	34	664	37
籽实 Seeds		356	32	251	31
根 Roots		430	20	326	17

1985年在含有效硼0.26PPM 缺硼的土壤上,于播种时用0.5%硼砂溶液拌种,生育至鼓粒期(8月17日)采集施硼与未施硼两种处理的植株烘干、粉碎,进行不同部位含量的分析,分析方法为硝酸、过氯酸消化,原子吸收分光光度计测定,结果如表 4。

- (1) 硼的分布: 茎、叶柄、根部硼的含量较低,在9—24 PPM,荚皮、子实、中、下属叶片含量相近,在30—45PPM,中上层叶片对施硼的反应效应明显,施硼处理比未施的含量分别增加22.2%和13.3%,使功能叶片硼含量从低量级的18PPM提高到充足级的22PPM,改善了大豆营养体重要部位的硼素营养状况。
- (2) Ca/B 的比值:据报导⁽⁶⁾叶部钙和硼的含量比值可做为作物是否缺硼指标,Ca/B 高表示缺硼,大豆的适宜 Ca/B 为 500/1。本试验分析结果(表 4)不同部 位 的 Ca/B 为 42.8-122.1/1. 叶片由上而下比值递减,钙的含量下降,硼的含量 上 升,施 硼后顶端 1-6 层叶片,Ca/B比值减小,7-9 层叶片施硼后 Ca/B比值增大,但与报 导的大豆 Ca/B 为 500/1,相差较大,除发现本试验分析结果钙含量偏低外,其它 原 因 有待探讨。

三、施硼的有效条件及施用技术

1. 土壤有效硼含量与增产效果

1984—1986年66个田央试验调查结果(表 5)土壤有效硼含量 0.50PPM 以下的田块施硎增产效果稳定、增产在 5.1 % 以上,含 0.51 PPM 以上增产效果不稳定(4.1—30.9),总的看不显著,0.71PPM 以上的田块增产不显著,且出现减产,在敦化市太平益含有效硼 0.92PPM 的田块上,施硼普发生硼害症状。

将三年土壤有效硼含量与增产率的调查结果进行回归分析,得出函数方程式为:

1984年 y(增产%)=11.44-5.74x (土壤有效硼含量) n=9

1985年 y(增产%)=22.40-29.39x** (土壤有效硼含量) n=12

1986年 y(增产%)=26.65)-31.84x (土壤有效硼含量) n=21

利用显著性测定达显著水准的1985年函数方程计算结果:当土壤含有效砌0.50PPM时,施硼增产7.706%,含量0.60PPM时施硼增产4.8%,已不显著。

2. 侧的施用方法与效果

1984 年在 11 个点上进行田间比较试验,①用 500 8 硼砂与 30—50 倍细土混合做底肥,②用 0.2 % 硼砂溶液于苗期,初花期喷洒于叶面,两种方法均以不施硼为对照,设三次重复,小区面积28.8 m²,结果见表 6 ,土壤合有效硼 0.76 PPM 以上的地块,两种方法均无效,甚至减产,土壤有效硼含量 0.06—0.62 PPM,用硼做底肥增产效果高于叶面喷施效果的有 5 个点,平均增产 22.0 %。比叶面喷施的多增产 8.3 %,叶面喷施效果高于做底肥效果的有五个点,平均增产 18.3 %,比做底肥的多增产 4.9 %。

1985年在敦化市大桥乡含有效硼 0.42PPM的土壤上,试验不同施用方法的效果。试验设四个处理:①每亩用500g硼砂与30一50倍细土混合做底肥;②用 0.2 光硼砂溶 浓于开花前喷施于叶面,每亩用 10—15kg 溶液;③ 0.5kg 种 子拌 1g 硼砂;④不 施硼砂做对照。三次重复,结果如表 7,三种方法均有显著的增产效果,增产15.8—27.0 %,每亩增收 22—37.5kg 大豆。

表 5 土壤有效硼含量与施硼效果

单位. PPM

Table 5 Content of available boron in the soil and effect of boron application

土壤有效硼 A	年 度 Years	1984	1985	1986	平均 Mean
0—0.10		2	2	1	5
	平均增产 Mlean increase yield	29.7	24.7	16.2	25.0
0.11-0.20	点 数 Points	1	2	11	14
	平均增产 Mean incresse yield	6.0	22.5	11.6	11.2
0.21-0.30	点 数 Points		2	9	11
	平均增产 Mean increase yield	_	6.7	21.4	19.7
点 31-0.40	点 数 Points	1	2	12	15
	平均增产 Mean increase yield	18.7	11.0	15.0	14.6
0.41-0.50	点 数 Points	1	1	8	10
	平均增产 Mean increase yield	5.1	10.0	12.9	11.8
0.51-0.60	点 数 Points	1	1	3	5
	平均增产 Mean increase yield	10.1	6.7	2.5	4.9
0.61-0.70	平均増产 Mean increase yield 6.0 22.5	1	2		
		39.6	_	22.2	30.9
0.71以上	点 数 Points	2	2	-	4
	平均增产 Mean increase yield	+0.810.4	+4.118.4	_	+4.118.4

3. 叶面喷施不同浓度硼砂溶液的效果

1985年在敦化市大桥乡极缺硼 (痕迹含量)的土壤上,进行田间试验,设 0.1%、0.2%、0.3% 三种硼砂浓度,以清水为对照,于大豆开花前期,每亩喷 15kg 溶液,结果如表 8:以 0.2—0.3%的浓度增产效果为好,分别比对照增产 40.2%和 43.8%,比 0.1%浓度的多增产 7.8—11.4%,每亩多收大豆 10—14.5kg。

表 6 砌砂不同施用方法的效果

单位: kg 亩 PPM

Table 6 Comparison of effect on different methods of borax application

Unit: kg. mu.PPM

						•
项 目 Items	未施产量 Yield of	种肥S	eed manure	叶面喷	土壤含有效砌	
地址 Areas	n o B fertilizer	增产 Increase yield	%	增产 Increase yield	%	Available B in the soil
敦化县沙河站 Dunhva county Sahezhan	205	20.5	10.0	4.5	2.2	0.20
發化县太平岭 Dunhua county Taipingling	178	1.5	0.8	4.0	2.2	0.10
敦化县大桥 Dunhua county Daqiao	115	57.0	49.3	41.0	35.6	0.03
永吉县五里河 Yongii courty Wulihe	169.5	-16.0	-10.4	-23.5	-16.1	0.76
永吉县乌拉街官通 Yongji county Wulazi Guantong	233.5	-6.5	-2.9	-2.0	-0.9	
永吉县乌拉街韩屯 Yongi county Walazi Hantun	178.5	-15.0	-8.4	20.5	-11.5	_
榆树县环城 Yushu county Huancheng	111	44	39.6	23.0	20.7	0,62
编树县马棚子 Yushu county Gongpengzhi	113.5	11.5	10.1	18.0	15.9	0.56
前郊县深井子 Qianguo county Shemjingzhi	166.5	10	6.0	7.5	4.5	0.20
前郭县查干花 Qianguo county Chaganhua	75.0	12.5	16.7	15,5	20.7	0.38
长岭县流水 Changling county Liushui	127.0	6.5	5.1	3.5	2.8	0.48

表 7 硼砂不同施用方法对产量的影响

单位: kg 亩 g

		1 == 3 == 3
Table 7	Effect of application borax methods on yield of soybean	unit mu.K g .g

项目 ltem	j≃ 盘 Yield			单株粒重	Seed wei	ight plant	百粒重 100 seeds weight			
处理 Treatment	产量 Yield	增产 Increment of yield	%	克/株 g/plant	增加 Incre- ment	<i>o</i> ,	克 g	增 产 Increament of yield		
底肥 500g Fertilizer 500g	163,5	24.5	17.9	19.1	10.8	130.0	18.5	1.5	8.8	
0.2% 溶液叶面喷施 0.2% foliage spray	161.0	22.0	16.2	16.1	7.8	94.0	18.2	1,2	7.1	
每 kg 种用 2 g 拌种 2g/kg seed	176.5	37.5	27.1	20.1	11.8	142.2	18.5	1.5	8.8	
不施 No application	139,0			8.3		-	17.0	-		

表 8 不同浓度的硼砂溶液对产量的影响

单位: kg亩 g

Table 8 Effect of different borax concentration on the yield unit mu. kg. g

项目 Item	产 量 Yield			单株粒重	Seeds weigh	ht/plant	百粒重 100 seeds weight		
处理 \ Treatment \	产量 Yield	增 产 Increment of yield	%	克/株 g/plant	增加 Increment	%	克 g	增加 Incremant	%
0.1%	169.5	41.5	16.20	14.6	6.6	8,2.5	18.5	1.4	8.2
0.2%	179.5	51.5	20.1	19.9	11.9	148.8	19.0	1.9	11.1
0.3%	184.0	56.0	21.9	20.1	12.1	151.3	19.5	2.4	14.0
水 Water	128.0	_		8.0			17.1		_

四、结 语

经三年试验调查结果表明: 我省东部缺硼白浆土种植的大豆功能叶片含 硼量 低于20PPM, 呈缺乏状态,施硼平均增产18.3%,每亩增收大豆21.5kg,西部 缺 硼 的 淡黑钙土种植的大豆功能叶片含硼量也为缺硼状态,施硼平均增产17.4%,每亩 平 均增产大豆20kg,中部黑土地区大豆功能叶片含硼 30—36 PPM,虽属充足级,但偏低,大部份试验地块施硼亦增产,平均增产11.0%,每亩增收大豆13.5kg。硼的肥效与土壤有效硼含量有关,其函数方程式为 y (增产%) = 22.403 - 29.386x** (土壤有效硼含量),在缺硼土壤上每亩用250—500g 硼砂做底肥(硼砂与种子间要建立隔离土层),每kg种子用2g 硼砂拌种,叶面喷施0.2—0.3%,浓度的硼砂溶液都有效;土壤有效 硼含量0.92PPM 的地块施硼曾发生硼中毒症。在缺硼土壤上施硼改善了植株的硼素营养状况,促使生命力增强;直至成熟期植株仍为活体,从而使大豆生长、发育良好,提高产量。

吉林省土壤有效硼平均含量东部为0.43PPM,中部为0.49PPM,西部为0.52PPM, 因此,施硼是提高大豆产量有希望的切实可行的,经济有效的增产措施。

参 考 文 献

- [1] J. J 莫尔维德特等 1984, 农业中的微量营养元素 (美)中国农业科学院土肥所编译,农业出版社。
- 〔2〕 孟庆秋 张树仁,1983,农业中的微量营养元素含量评价及其相关分析, 吉林省农牧厅编吉林省土壤普查成果应用资料汇编、吉林省农业科学院。
- 【3】 B. E 考德威尔 1982, 大豆的改良、生产和利用 吉林省农业科学院等译
- [4] 刘铮等 1982,我国缺乏微量元素的土壤分布化工部化肥利、《无机盐工业》编辑部合编徵量元素 肥 料专集,中国科学院土壤所。