[1]王艳微,王敏,王江,等.大豆OPR基因家族全基因组鉴定与表达分析[J].大豆科学,2022,41(02):129-139.[doi:10.11861/j.issn.1000-9841.2022.02.0129]
 WANG Yan-wei,WANG Min,WANG Jiang,et al.Genome-wide Identification and Expression Analysis of Soybean OPR GeneFamily[J].Soybean Science,2022,41(02):129-139.[doi:10.11861/j.issn.1000-9841.2022.02.0129]
点击复制

大豆OPR基因家族全基因组鉴定与表达分析

参考文献/References:

[1]蒋科技,皮妍,侯嵘,等.植物内源茉莉酸类物质的生物合成途径及其生物学意义[J].植物学报,2010, 45(2):137-148. (JIANG K J, PI Y, HOU R, et al. Jasmonate biosynthetic pathway: Its physiological role and potential application in plant secondary metabolic engineering[J]. Chinese Bulletin of Botany, 2010, 45(2): 137-148.[2]宋云, 李林宣, 卓凤萍, 等. 茉莉酸信号传导在植物抗逆性方面研究进展[J]. 中国农业科技导报, 2015, 17(2): 17-24. (SONG Y, LI L X, ZHUO F P, et al. Progress on jasmonic acid signaling in plant stress resistant[J] . Journal of Agricultural Science and Technology, 2015, 17(2): 17-24.[3]LI C, WILLIAMS M M, LOH Y T, et al. Resistance of cultivated tomato to cell content-feeding herbivores is regulated by the octadecanoid-signaling pathway[J]. Plant Physiology, 2002, 130(1): 494-503.[4]孙清鹏, 王小菁. 植物伤反应中的茉莉酸类信号[J]. 植物学报通报, 2003, 20(4):481-488. (SUN Q P, WANG X J. Jasmonates in plant wound signaling[J]. Chinese Bulletin of Botany, 2003, 20(4): 481-488.[5]HOWE G A. Jasmonates as signals in the wound response[J].Journal of Plant Growth Regulation, 2004, 23(3): 223-237.[6]WASTERNACK C, STENZEL I, HAUSE B, et al. The wound response in tomato-role of jasmonic acid[J]. Journal of Plant Physiology, 2006, 163(3): 297-306.[7]WASTERNACK C, HAUSE B. A bypass injasmonate biosynthesis the OPR3-independent formation [J]. Trends in Plant Science, 2018, 23(4): 276-279.[8]TURNER J G, ELLIS C, DEVOTO A. The jasmonate signal pathway[J]. The Plant Cell, 2002, 14(1): S153-S164.[9]LI W, LIU B, YU L, et al. Phylogenetic analysis, structural evo-lution and functional divergence of the 12-oxo-phytodienoate acid reductase gene family in plants[J]. BMC Evolutionary Biology, 2009, 9(1): 1-19.[10]BEYNON E R, SYMONS Z C, JACKSON R G, et al. The role of oxophytodienoate reductases in the detoxification of the explosive 2, 4, 6-trinitrotoluene by Arabidopsis[J]. Plant Physiology, 2009, 151(1): 253-261.[11]SCHALLER F, WEILER E W. Molecular cloning and characte-rization of 12-oxophytodienoatereductase, an enzyme of the octadecanoid signaling pathway from Arabidopsis thaliana: Structural and functional relationship to yeast old yellow enzyme[J]. Journal of Biological Chemistry, 1997, 272(44): 28066-28072.[12]LAUDERT D, HENNIG P, STELMACH B A, et al. Analysis of 12-oxo-phytodienoic acid enantiomers in biological samples by capillary gas chromatography-mass spectrometry using cyclodextrin stationary phases[J]. Analytical Biochemistry, 1997, 246(2): 211-217.[13]STINTZI A. The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis[J]. Proceedings of the National Academy of Sciences, 2000, 97(19): 10625-10630.[14]SCHALLER F, HENNIG P, WEILER E W. 12-Oxophytodienoate-10, 11-reductase:Occurrence of two isoenzymes of different specificity against stereoisomers of 12-oxophytodienoic acid[J]. Plant Physiology, 1998, 118(4): 1345-1351.[15]SCHALLER F, BIESGEN C, MSSIG C, et al. 12-oxophyto-dienoatereductase 3 (OPR3) is the isoenzyme involved in jasmonate biosynthesis[J]. Planta, 2000, 210(6): 979-984.[16]BIESGEN C, WEILER E W. Structure and regulation of OPR1 and OPR2, two closely related genes encoding 12-oxophytodienoic acid-10, 11-reductases from Arabidopsis thaliana[J]. Planta, 1999, 208(2): 155-165.[17]ZHANG J, SIMMONS C, YALPANI N, et al. Genomic analysis of the 12-oxo-phytodienoic acidreductase gene family of Zea mays[J]. Plant Molecular Biology, 2005, 59(2): 323-343.[18]BREITHAUPT C, KURZBAUER R, LILIE H, et al. Crystal structure of 12-oxophytodienoatereductase 3 from tomato: Self-inhibition by dimerization[J]. Proceedings of the National Academy of Sciences, 2006, 103(39): 14337-14342.[19]LI W, ZHOU F, LIU B, et al. Comparative characterization, expression pattern and function analysis of the 12-oxo-phytodienoic acidreductase gene family in rice[J]. Plant Cell Reports, 2011, 30(6): 981-995. [20]MOU Y, LIU Y, TIAN S, et al. Genome-wide identification and characterization of the OPR gene family in wheat (Triticum aestivum L.)[J]. International Journal of Molecular Sciences, 2019, 20(8): 1-18.[21]MATSUI H, NAKAMURA G, ISHIGA Y, et al. Structure and expression of 12-oxophytodienoatereductase (subgroup I) genes in pea, and characterization of the oxidoreductase activities of their recombinant products[J]. Molecular Genetics and Genomics, 2004, 271(1): 1-10.[22]PAK H, WANG H, KIM Y, et al. Creation of male-sterile lines that can be restored to fertility by exogenous methyl jasmonate for the establishment of a two-line system for the hybrid production of rice (Oryza sativa L.)[J]. Plant Biotechnology Journal, 2021, 19(2): 365-374.[23]TANI T, SOBAJIMA H, OKADA K, et al. Identification of the OsOPR7 gene encoding 12-oxophytodienoate reductase involved in the biosynthesis of jasmonic acid in rice[J]. Planta, 2008, 227(3): 517-526.[24]夏凡, 代婷婷, 姚新转, 等. 水稻OPR基因的克隆及其在烟草中抗镉性分析[J]. 种子, 2020, 39(5): 53-58. (XIA F, DAI T T, YAO X C, et al. Cloning of Oryza sativa OPR gene and its cadmium resistance in tobacco[J]. Seed, 2020, 39(5):53-58.[25]PIGOLEV A V, MIROSHNICHENKO D N, PUSHIN A S, et al. Overexpression of Arabidopsis OPR3 in hexaploid wheat (Triticum aestivum L.) alters plant development and freezing tolerance[J]. International Journal of Molecular Sciences, 2018, 19(12): 1-17.[26]DONG W, WANG M, XU F, et al. Wheat oxophytodienoate reductase gene TaOPR1 confers salinity tolerance via enhancement of abscisic acid signaling and reactive oxygen species scavenging[J]. Plant Physiology, 2013, 161(3): 1217-1228.[27]WANG Y, YUAN G, YUAN S, et al.TaOPR2 encodes a 12-oxo-phytodienoic acid reductase involved in the biosynthesis of jasmonic acid in wheat (Triticum aestivum L.)[J]. Biochemical and Biophysical Research Communications, 2016, 470(1): 233-238.[28]YAN Y, CHRISTENSEN S, ISAKEIT T, et al. Disruption of OPR7 and OPR8 reveals the versatile functions of jasmonic acid in maize development and defense[J]. The Plant Cell, 2012, 24(4): 1420-1436.[29]林延慧, 唐力琼, 徐靖, 等. 大豆响应涝害bZIP基因Glyma04g04170的生物信息学分析及互作蛋白预测[J]. 大豆科学, 2020, 39(5): 727-733. (LIN Y H, TANG L Q, XU J, et al. Bioinformatics analysis and interacting protein prediction of soybean bZIP gene Glyma04g04170 in response to submergence stress[J]. Soybean Science, 2020, 39(5): 727-733.[30]EL-GEBALI S, MISTRY J, BATEMAN A, et al. The Pfam protein families database in 2019[J]. Nucleic Acids Research, 2019, 47(D1): D427-D432.[31]FINN R D, CLEMENTS J, EDDY S R. HMMER web server: Interactive sequence similarity searching[J]. Nucleic Acids Research, 2011, 39(suppl_2): W29-W37.[32]KUMAR S, STECHER G, LI M, et al. MEGA X:Molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6): 1547-1549.[33]CHEN N C, CHEN H, ZHANG Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202.[34]HU B, JIN J, GUO A Y, et al. GSDS 2.0: An upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8): 1296-1297.[35]BAILEY T L, BODEN M, BUSKE F A, et al. MEME SUITE: Tools for motif discovery and searching[J]. Nucleic Acids Research, 2009, 37(suppl_2): W202-W208.[36]TAMANG B G, LI S, RAJASUNDARAM D, et al. Overlapping and stress-specific transcriptomic and hormonal responses to flooding and drought in soybean[J]. The Plant Journal, 2021, 107(1): 100-117.[37]BELAMKAR V, WEEKS N T, BHARTI A K, et al. Compre-hensive characterization and RNA-Seq profiling of the HD-Zip transcription factor family in soybean (Glycine max) during dehydration and salt stress[J]. BMC Genomics, 2014, 15(1): 1-25.[38]WANG M, CHEN B, ZHOU W, et al. Genome-wide identification and expression analysis of the AT-hook Motif Nuclear Localized gene family in soybean[J]. BMC Genomics, 2021, 22(1): 1-26.[39]WANG T Y, LIU Q,REN Y, et al. A pan-cancer transcriptome analysis of exitron splicing identifies novel cancer driver genes and neoepitopes[J]. Molecular Cell, 2021, 81(10): 2246-2260.[40]GUANG Y, LUO S, AHAMMED G J, et al. The OPR gene family in watermelon: Genome-wide identification and expression profiling under hormone treatments and root-knot nematode infection[J]. Plant Biology, 2021, 23(1): 80-88.[41]GUPTA A, RICO-MEDINA A, CAO-DELGADOA I. The physi-ology of plant responses to drought[J]. Science, 2020, 368(6488): 266-269.

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(02):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(02):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(02):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(02):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(02):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(02):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(02):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(02):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(02):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(02):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]

备注/Memo

收稿日期:2021-10-04

基金项目:国家自然科学基金面上项目(31871220,31801444);黑龙江省自然科学基金联合引导项目(LH2021C005);中央级公益性科研院所基本科研业务费专项资金(CAFYBB2019ZY003);中央高校基本科研业务费专项资金(2572020DP01)。
第一作者:王艳微(1998—),女,硕士研究生,主要从事植物表观遗传学研究。E-mail:w18767646675@163.com。
通讯作者:解莉楠(1978—),女,博士,副教授,主要从事植物抗逆生物学研究。E-mail:linanxie@nefu.edu.cn。

更新日期/Last Update: 2022-05-18