[1]胡慧敏,蔡婉菡,穆可彬,等.大豆ABA信号途径GmCDPK SK5基因异源表达探究[J].大豆科学,2021,40(06):737-747.[doi:10.11861/j.issn.1000-9841.2021.06.0737]
 HU Hui-min,CAI Wan-han,MU Ke-bin,et al.Study on the Heterologous Expression of GMCDPK SK5 Gene in Soybean ABA Signaling Pathway[J].Soybean Science,2021,40(06):737-747.[doi:10.11861/j.issn.1000-9841.2021.06.0737]
点击复制

大豆ABA信号途径GmCDPK SK5基因异源表达探究

参考文献/References:

[1]Mcainsh M R, Pittman J K. Shaping the calcium signature[J]. New Phytologist, 2009, 181(2): 275-294.[2]Liese A, Romeis T. Biochemical regulation of in vivo function of plant calcium-dependent protein kinases (CDPK)[J]. Biochimica et Biophysica Acta(BBA)-Molecular Cell Research, 2013, 1833(7): 1582-1589.[3]Xie K, Chen J, Wang Q, et al. Direct phosphorylation and activation of a mitogen-activated protein kinase by a calcium-dependent protein kinase in rice[J]. Plant Cell, 2014, 26(7): 3077-3089.[4]Mori I C, Yoshiyuki M, Yang Y, et al. CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-Type anion- and Ca2+-permeable channels and stomatal closure[J]. PLoS Biology, 2006, 4(10): e327.[5]Brandt B, Brodsky D E, Xue S, et al. Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branchedABI1 PP2C phosphatase action[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(26): 10593-10598.[6]Zhu S Y, Yu X C, Wang X J, et al. Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction inArabidopsis[J]. Plant Cell, 2007, 19(10): 3019-3036.[7]Choi H I, Park H J, Ji H P, et al. Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity[J]. Plant Physiology, 2005, 139(4): 1750-1761.[8]Kobayashi M, Ohura I, Kawakita K, et al. Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato nadph oxidase [J]. Plant Cell, 2007, 19(3): 1065-1080.[9]Asano T, Hakata M, Nakamura H, et al. Functional characteri-sation of OsCPK21, a calciumdependent protein kinase that confers salt tolerance in rice[J]. Plant Molecular Biology, 2011, 75(1-2): 179-191.[10]Liu F, Yoo B C, Lee J Y, et al. Calcium-regulated phosphorylation of soybean serine acetyltransferase in response to oxidative stress[J]. Journal of Biological Chemistry, 2006, 281(37): 27405-27415.[11]Choi H I , Hong J H , Ha J O , et al. ABFs, a family of ABA-responsive element binding factors[J]. Journal of Biological Chemistry, 2000, 275(3): 1723-1730.[12]Finkelstein R R, Lynch T J. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor[J]. Plant Cell, 2000, 12(4): 599-609.[13]Lang V, Palva E T. The expression of a rab-related gene, rab18, is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana(L.) Heynh[J]. Plant Molecular Biology, 1992, 21(3): 581-582.[14]Kurkela S, Borg-Franck M. Structure and expression of KIN2, one of two cold- and ABA-induced genes of Arabidopsis thaliana[J]. Plant Molecular Biology, 1992, 19(4): 689-692.[15]Yamaguchi-Shinozakiaib K, Shinozaki K. A nove1 cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature, or high-salt stress[J]. The Plant Cell, 1994, 6: 251-264.[16]牛娟. 大豆CDPK蛋白基因CDPK-SK5的分离、表达分析与亚细胞定位[D]. 南京: 南京农业大学, 2012. (Nu J. Separate, expression and subcellular location of CDPK protein gene, CDPK-SK5 in soybean[D]. Nanjing: Nanjing Agricultural University, 2012.)[17]宋利茹, 王爽, 牛娟, 等. 春大豆种子田间劣变性和劣变抗性的差异蛋白质组学研究[J]. 中国农业科学, 2015, 48(1): 23-32. (Song L R, Wang S, Niu J, et al. Differentially proteomics analysis of pre-harvest seed deterioration and deterioration resistance in spring soybean[J]. Scientia Agricultura Sinica, 2015, 48(1): 23-32.)[18]王爽. 高温高湿下大豆钙依赖蛋白激酶基因在种子活力中的功能分析[D]. 南京: 南京农业大学, 2016. (Wang S. Function analysis of soybean [Glycine max (L.) Merr.] CDPK genes on seed vigor under high temperature and humidity[D]. Nanjing: Nanjing Agricultural University, 2016.)[19]陈明. GmCOL4、GmZTL1与顺式元件HSE响应高温高湿以及调控GmSBH1的研究[D]. 南京: 南京农业大学, 2019. (Chen M. Study on the function of GmZTL1, GmCOL4 and cis-element and the co-regulation to GmSBH1[D]. Nanjing: Nanjing Agricultural University, 2019.)

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(06):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(06):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(06):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(06):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(06):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(06):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(06):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(06):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(06):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(06):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]

备注/Memo

收稿日期:2021-04-25

基金项目:国家自然科学基金(31371711,31671772,31971996);国家重点研发计划(2018YFD0100905)。
第一作者:胡慧敏(1995—),女,在读硕士,主要从事大豆遗传育种研究。E-mail:2018101089@njau.edu.cn。
通讯作者:麻浩(1965—),男,博士,博导,主要从事种子科学与大豆遗传育种研究。E-mail:Lq-ncsi@njau.edu.cn。

更新日期/Last Update: 2021-12-30