[1]田艺心,高凤菊,曹鹏鹏,等.大豆耐盐基因研究进展[J].大豆科学,2018,37(04):629-636.[doi:10.11861/j.issn.1000-9841.2018.04.0629]
 TIAN Yi-xin,GAO Feng-ju,CAO Peng-peng,et al.Recent Developments of Salt Tolerance Gene in Soybean[J].Soybean Science,2018,37(04):629-636.[doi:10.11861/j.issn.1000-9841.2018.04.0629]
点击复制

大豆耐盐基因研究进展

参考文献/References:

[1]American Soybean Association, 2014[EB/OL]. http://soystats.com.
[2]Ashraf M, Wu L. Breeding for salinity tolerance in plants [J]. Critical Reviews in Plant Science, 1994,13(1): 17-42.
[3]Abel G H. Inheritance of the capacity for chloride inclusion and chloride exclusion by soybeans [J]. Crop Science, 1969, 9(6):697- 698.
[4]邵桂花,常汝镇,陈一舞.大豆耐盐性遗传的研究[J].作物学报,1994.20(6):721-726. (Shao G H, Chang R Z, Chen Y W. Study on inheritance of salt tolerance in soybean [J]. Acta Agronomica Sinica, 1994,20(6):721-726.)
[5]罗庆云,於丙军,刘友良,等.栽培大豆耐盐性的主基因+多基因混合遗传分析[J].大豆科学,2004, 23(4):239-244. (Luo Q Y, Yu B J, Liu Y L, et al. The mixed inheritance analysis of salt tolerance in cultivara of Glycine max[J]. Soybean Science, 2004, 23(4):239-244.)?
[6]范龙,孙天杰,杨郡,等.大豆GmNHX1基因克隆及其在酵母中的耐盐性分析[J].河北农业大学学报,2015,38(6):8-12, 24. (Fan L, Sun T J, Yang J, et al. Cloning and functional characterization of a vacuolar Na+/H+ antiporter gene (GmNHX1) from soybean [J].Journal of Agricultural University of Hebei, 2015,38(6):8-12, 24.)
[7]唐晓飞,董兴月,魏崃,等.转大豆Na+/H+逆向转运蛋白GmNHX1基因植株的获得[J].分子植物育种,2016,14(4):904-909. (Tang X F, Dong X Y, Wei L, et al. Obtaining transgenic soybean plants with Na+/H+ antiporter (GmNHX1)[J].Molecular Plant Breeding, 2016,14(4):904-909.)
[8]周国安,关荣霞,李英慧,等.异源表达一个大豆Na+/H+逆向转运蛋白基因GmNHX2提高拟南芥的耐盐性[J].科学通报, 2009,54(17):2508-2516. (Zhou G A, Guan R X, Li Y H, et al. Molecular characterization of GmNHX2, a Na+/H+ antiporter gene homolog from soybean, and its heterogonous expression to improve salt tolerance in Arabidopsis[J]. Chinese Scencei Bulletin, 2009, 54(17):2508-2516.)
[9]张继星,王晓宇,陈永胜,等.大豆GmNHX3基因克隆及遗传转化载体的构建[J].吉林大学学报,2012,50(2):365-370. (Zhang J X, Wang X Y, Chen Y S, et al. Cloning of GmNHX3 gene from Glycine max L Merr and construction of its genetic transformation vector [J]. Journal of Jilin University ( Science Edition), 2012, 50(2):365-370.)
[10]Phang T H, Shao G, Lam H M. Salt tolerance in soybean [J]. Journal of Integrative Plant Biology, 2008, 50(10): 1196-1212.
[11]Chen H, Chen X, Gu H P, et al.GmHKT1;4, a novel soybean gene regulating Na+/K+ ratio in roots enhances salt tolerance in transgenic plants[J]. Plant Growth Regulation, 2014, 73(3): 299-308.
[12]陈华涛,陈新,顾和平,等.大豆GmHKT6;2基因的克隆与表达特性分析[J].华北农学报,2012, 27(3):1-5. (Chen H T, Chen X, Gu H P, et al. Cloning and expression pattern analysis of GmHKT6; 2 in soybean [J].Acta Agriculturae Boreali Sinica, 2012, 27(3):1-5.)
[13]Luo G Z, Wang H W, Huang J, et al. A putative plasma membrane cation/proton antiporter from soybean confers salt tolerance in Arabidopsis[J]. Plant Molecular Biology, 2005, 59(5): 809-820.
[14]Qi X P, Li M W, Xie M, et al. Identification of a novel salt tolerance gene in wild soybean by whole genome sequencing [J]. Nature Communications, 2014, 5:43-49.o
[15]Guan R X, Qu Y, Guo Y, et al. Salinity tolerance in soybean is modulated by natural variation in GmSALT3[J]. The Plant Journal, 2014, 80(6): 937-950.
[16]王楠,赵士振,吴孟华,等.大豆耐盐相关QTLs鉴定和功能基因研究进展[J].遗传,2016,38(11):992-1003.(Wang N, Zhao S Z, Wu M H, et al. Research progress on identification of QTLs and functional genes involved in salt tolerance in soybean [J]. Hereditas, 2016, 38(11):992-1003.)
[17]Jin T C, Chang Q, Li W F, et al. Stress inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa [J]. Plant Cell Tissue and Organ Culture, 2010, 100(2): 219-227.?
[18]Xu Z L, Ali Z, Xu L, et al. The nuclear protein GmbZIP110 has transcription activation activity and plays important roles in the response to salinity stress in soybean [J]. Science Report, 2016, 6: 20366.
[19]Rao S S, Habbak M H, Havens W M, et al. Over expression of GmCaM4 in soybean enhances resistance to pathogens and tolerance to salt stress [J]. Molecular Plant Pathology, 2014, 15(2): 145-160.
[20]Quach T N, Tran L S P, Valliyodan B, et al. Functional analysis of water stress responsive soybean GmNAC003 and GmNAC004 transcription factors in lateral root development in Arabidopsis [J]. PLoS One, 2014, 9(1): e84886.?
[21]Zhai Y, Wang Y, Li Y J, et al. Isolation and molecular characterization of GmERF7, a soybean ethylene response factor that increases salt stress tolerance in tobacco [J]. Gene, 2013, 513(1): 174-183.
[22]Wei W, Huang J, Hao Y J, et al. Soybean GmPHD type transcription regulators improve stress tolerance in transgenic arabidopsis plants[J]. PLoS One, 2009, 4(9): 201-209.
[23]Zhang Y W, Zhao L, Li H Y, et al. GmGBP1, a homolog of human ski interacting protein in soybean, regulates flowering and stress tolerance in Arabidopsis[J]. BMC Plant Biology, 2013, 13: 21.?
[24]Wang F, Chen H W, Li Q T, et al.GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants [J]. Plant Journal, 2015, 83(2): 224-236.?
[25]蔡丹,郑易之,兰英.大豆LEA蛋白Em的表达可提高大肠杆菌和烟草耐盐性[J].深圳大学学报(理工版),2006,23(3):230-236. (Cai D, Zheng Y Z, Lan Y. Expression of Em gene (LEA1) from soybean immature seeds confers salt tolerance to Escherichia coli and tobacco plants [J]. Journal of Shenzhen University (Science and Engineering), 2006,23(3):230-236.)
[26]刘昀,李冉辉,郑易之,等.大豆PM2蛋白及其结构域可提高烟草耐盐性[J].深圳大学学报(理工版),2007.24(1):95-101. (Liu Y, Li R H, Zheng Y Z, et al. Soybean PM2 protein and its 22-mer region enhance salt tolerance of tobacco plants [J]. Journal of Shenzhen University (Science and Engineering),2007, 24(1): 95-101.)
[27]Wang Y X, Suo H C, Zheng Y, et al. The soybean root specific protein kinase GmWNK1 regulates stress responsive ABA signaling on the root system architecture [J]. Plant Journal, 2010, 64(2): 230-242.
[28]Ji W, Zhu Y M, Li Y, et al. Over expression of a glutathione S transfer gene,GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco [J]. Biotechnology Letter, 2010, 32(8): 1173-1179.
[29]Zhou G A, Chang R Z, Qiu L J. Over expression of soybean ubiquity conjugating enzyme gene GmUBC2 confers enhanced drought and salt tolerance through modulating abiotic stress responsive gene expression in Arabidopsis[J]. Plant Molecular Biology, 2010, 72(4-5): 357-367.
[30]Zhou L, Wang C, Liu R F, et al. Constitutive over expression of soybean plasma membrane intrinsic protein GmPIP1; 6 confers salt tolerance[J]. BMC Plant Biology, 2014, 14: 181.
[31]孙海丹.大豆耐盐相关基因GmA3和GmA5的筛选及其功能鉴定[D].长春:东北师范大学,2004 .(Sun H D. Isolation and functional identification of salt tolerance related-genes GmA3 and GmA5 from soybean [D].Changchun: Northeast Normal University, 2004.)
[32]吴振敏.利用基因芯片技术筛选野生大豆耐盐碱基因及功能研究[D].长春:吉林农业大学,2008. (Wu Z M. Screening and function identification of the genes response to alkaline stress in soja by DNA chip [D].Changchun: Jilin Agricultural University, 2008.)
[33]王洪新,胡志昂,钟敏,等.盐渍条件下野大豆群体的遗传分化和生理适应:同工酶和随机扩增多态DNA研究[J].植物学报,1997,39(1):34-42. (Wang H X, Hu Z A, Zhong M, et al. Genetic differentiation and physiological adaptation of wild soybean (Glycine Soja) populations under saline conditions: Isozymatic and random amolified polymorphic DNA study [J].Acta Botanica Sinica, 1997, 39(1):34-42.)
[34]Zhong M, Hu Z A, Gressh P M. Search for molecular markers of salt tolerance of soybean by DNA amplification finger printing [J]. Soybean Genetics Newsletter, 1997, 24:81- 82.
[35]郭蓓,邱丽娟,邵桂花,等.大豆耐盐基因的PCR标记[J].中国农业科学, 2000,33(1):10-16.(Guo B, Qiu L J, Shao G H, et al. Tagging salt tolerant gene using PCR markers in soybean [J].Scientia Agricultura Sinica, 2000, 33(1):10-16.)
[36]郭宝生.中野1号大豆耐盐生理及遗传差异分析[D].北京:中国农业科学院,2004. (Guo B S. Physiology and genetic diversity analysis of salt-tolerance in soybean cultivar Zhongye 1[D].Beijing: Chinese Academy of Agricultural Science, 2004.)
[37]张海燕.大豆耐盐基因定位及耐盐相关基因分子标记的开发[D].乌鲁木齐:新疆农业大学,2005. (Zhang H Y.Mapping the salt tolerant gene and development of salt tolerant gene markers in soybean [D].Urumchi: Xinjiang Agricultural University,2005.)
[38]田蕾.大豆耐盐基因定位及耐盐种质资源分子标记选择效率分析[D].北京:中国农业科学院,2008. (Tian L.Mapping of salt tolerance gene and marker assisted selection analysis of soybean germolasm [D]. Beijing: Chinese Academy of Agricultural Science, 2008.)
[39]李兆南.大豆抗旱、耐盐性鉴定及其与SSR标记的关联分析[D].长春:吉林大学,2011.(Li Z N. Association analysis of genotyping data uncovered strong relationship between draught, salt tolerance identification in collected soybean (Glycine max) cultivars and selected SSR makers [D].Changchun: Jilin University, 2011.)
[40]Kumawat G, Gupta S, Ratnaparkhe M B, et al. QTLomicsin soybean: A way forward for translational genomics and breeding [J]. Front Plant Science, 2016, 7: 1-26.
[41]Lee G J, Boerma H R, Villagarcia M R, et al. A major QTL conditioning salt tolerance in S100 soybean and descendent cultivars [J]. Theoretical and Applied Genetics, 2004, 109(8): 1610-1619.
[42]Hamwieh A, Tuyen D D, Cong H, et al. Identification and validation of a major QTL for salt tolerance in soybean [J]. Euphytica, 2011, 179(3): 451-459.
[43]向东.大豆耐盐主效QTL相关基因的遗传基因组学研究[D].雅安:四川农业大学,2010. (Xiang D.Study on candidate genes of a major QTL for salt tolerance by gentetical genomics in soybean (Glycine max) [D].Yaan: Sichuan Agricultural University, 2010.)
[44]陈华涛,陈新,喻德跃.大豆苗期耐盐性的遗传及QTL定位分析[J].中国油料作物学报,2011,33(3):231-234. (Chen H T, Chen X, Yu D Y. Inheritance analysis and mapping quantitative trait loci ( QTLs) associated with salt tolerance during seedling growth in soybean [J]. Chinese Journal of Oil Crop Sciences, 2011,33(3):231-234.)
[45]闫玮雯.大豆耐盐QTL定位及耐盐相关基因克隆[D].秦皇岛:河北科技师范学院,2012. (Yan W W. QTL mapping and related gene cloning for salt tolerance in soybean [D]. Qinhuangdao: Hebei Normal University Of Science & Technology,2012.)
[46]杨燕.大豆幼苗期耐盐QTL的定位及候选基因的克隆[D].南京:南京农业大学,2013. (Yang Y. Mapping QTL conferring salt tolerance at seedling stage and cloning of candidate genes in soybean [D]. Nanjing: Nanjing Agricultural University, 2013.)
[47]Ha B K, Vuong T D, Velusamy V, et al. Genetic mapping of quantitative trait loci conditioning salt tolerance in wild soybean (Glycine soja) PI483463[J]. Euphytica, 2013, 193(1): 79-88.?
[48]Guan R,Chen J, Jiang J, et al. Mapping and validation of a dominant salt tolerance gene in the cultivated soybean (Glycine max) variety Tiefeng 8 [J]. The Crop Journal, 2014, 2(6): 358-365.?
[49]李莹.耐盐野生大豆DREB类转录因子基因的克隆与分析[D].哈尔滨:东北农业大学,2008. (Li Y. Cloning and analysis of DREB transcription factor gene in salt tolerance wild soybean [D]. Harbin: Northeast Agricultural University, 2008.)
[50]马强.农杆菌介导耐盐碱基因ScNHX1在大豆中的转化和表达[D].长春:东北师范大学,2008. (Ma Q. The transformation and expression of a salt tolerant gene ScNHX1 via agrobacterium tumefaciens in soybean [D]. Changchun: Northeast Normal University, 2008.)
[51]曹凌雪.AtNTL5过表达高羊茅耐盐性分析及大豆耐盐相关基因GmDREBID及GmRF功能的初步分析[D].济南:山东大学,2012 .(Cao L X. Salt tolerance analysis of AtNTL5 transgenic festuca arundinacea and primarily functional analysis of soybean salt tolerance responsive genes GmDREB1D and GmRF[D].Jinan: Shandong University, 2012.)
[52]刘晓丽.大豆钠锂离子耐受基因(GmSLT)的克隆与功能研究[D].上海:上海交通大学,2011. (Liu X L. Clone and functional analysis of Glycine max Na+/Li+tolerant gene (GmSLT) [D]. Shanghai: Shanghai Jiaotong University, 2011.)
[53]罗晓,曹蕾,王明超,等.野生大豆盐碱胁迫响应基因GsZFP1的克隆及序列分析[J].东北农业大学学报,2012,43(4):20-26. (Luo X, Cao L, Wang M C, et al. Isolation and sequence analysis of alkali stress related gene GsZFP1[J]. Journal of Northeast Agricultural University, 2012. 43(4): 20-26.)
[54]朱丹,柏锡,朱延明,等.野生大豆盐碱胁迫相关GsTIFY11b的克隆与功能分析[J].遗传,2012,34(2):230-239. (Zhu D, Bai X, Zhu Y M, et al. Isolation and functional analysis of GsTIFY11b relevant to salt and alkaline stress from Glycine soja[J]. Hereditas, 2012, 34 (2): 230-239.)
[55]刘晓丽.SeNHX1转入大豆的遗传转化及耐盐性研究[D].天津:天津大学,2009. (Liu X L. The genetic transformation and study on salt-tolerance of soybean transformed by SeNHX1[D].Tianjin: Tianjin University, 2009.)
[56]Cao D, Hou W S, Liu W, et al. Over expression of TaNHX2 enhances salt tolerance of ‘composite’ and whole transgenic soybean plants [J]. Plant Cell, Tissue and Organ Culture, 2011, 107: 541-552.
[57]Liu M, Li D M, Wang Z K, et al. Transgenic expression of ThIPK2 gene in soybean improves stress tolerance, oleic acid content and seed size [J]. Plant Cell, Tissue and Organ Culture, 2012, 111: 277-289.
[58]Subramanyam K, Arun M, Mariashibu T S, et al. Over expression of tobacco osmotin (Tbosm) in soybean conferred resistance to salinity stress and fungal infections [J]. Planta,2012, 236(6): 1909-1925.?
[59]于崧.转BADH基因大豆对盐碱土壤磷素转化的影响[D].哈尔滨:东北农业大学,2013. (Yu S. Effects of transgenic BADH soybean on the phosphorous transformation in saline alkaline soil [D]. Harbin: Northeast Agricultural University, 2013.)
[60]曹甜甜.转TvNHX1基因大豆后代的检测及其耐盐碱性分析[D].哈尔滨:哈尔滨师范大学,2014. ( Cao T T. Detection of transgenic TvNHX1 soybean progenies and analysis of salt and alkali tolerance in soybean [D]. Harbin: Harbin Normal University, 2014.)
[61]Seo J S, Sohn H B, Noh K, et al. Expression of the Arabidopsis at MYB44 gene confers drought/salt-stress tolerance in transgenic soybean[J]. Molecular Breeding, 2012, 29(3): 601-608.
[62]Zhang X X, Tang Y J, Ma Q B, et al. OsDREB2A, a rice transcription factor, significantly affects salt tolerance in transgenic soybean [J]. PLoS One, 2013, 8(12): 83-91.
[63]Xu Z L, Ali Z, Yi J X, et al. Over expression of GmWRKY111 enhances NaCl tolerance of salt sensitive genotype of Glcine max[C]. 南京:全国植物基因组学大会,2013,16(1):153-159.?
[64]王玥.SsNHX1转基因大豆的选育与耐盐性分析[D].长春:东北师范大学,2012. (Wang Y. Cultivation of transgenic soybean plants with SsNHX1 gene and its salt tolerance [D].Changchun: Northeast Normal University, 2012.)
[65]林抗雪.转TaNHX2基因大豆的耐盐性分析及转NTHK1基因大豆表型的初步鉴定[D].北京:中国农业科学院,2015. (Lin K X. Salt tolerance analysis of TaNHX2 over-expression transgenic soybean and preliminary phenotype identification of NTHK1 over-expression transgenic soybean [D]. Beijing: Chinese Academy of Agricultural Science, 2015.)
[66]Schmutz J,Cannon S B,Schlueter J,et al. Genome sequence of the palaeopolyploid soybean [J]. Nature,2010, 463 (7278):178-183.
[67]Deshmukh R K,Sonah H,Patil G,et al. Integrating omic approaches for abiotic stress tolerance in soybean [J]. Plant Genetics and Genomics,2014,5: 244.

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(04):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(04):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(04):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(04):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(04):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(04):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(04):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(04):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(04):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(04):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]

备注/Memo

收稿日期:2018-04-09

基金项目:山东省重点研发计划(重大关键技术)(2016ZDJS10A03);山东省现代农业产业技术体系杂粮创新团队建设项目(SDAIT-5-01)。
第一作者简介:田艺心(1986-),女,博士,助理研究员,主要从事种子科学、大豆栽培育种等研究。E-mail:tyxin213@sina.com。
通讯作者:高凤菊( 1969-) ,女,硕士,推广研究员,主要从事大豆及杂粮杂豆的栽培育种研究。E-mail: gfj1970@126. com。

更新日期/Last Update: 2018-08-01