ZHAO Guo-qin,WANG Yi,YU Yue-hua,et al.Bioinformatics and Expression Analysis of Soybean GmNF-YB2 Gene and Interaction Identification of GmNF-YA10[J].Soybean Science,2022,41(01):20-027.[doi:10.11861/j.issn.1000-9841.2022.01.0020]
大豆GmNF-YB2基因生物信息学和表达分析及与GmNF-YA10互作鉴定
- Title:
- Bioinformatics and Expression Analysis of Soybean GmNF-YB2 Gene and Interaction Identification of GmNF-YA10
- Keywords:
- soybean; GmNF-YB2; bioinformatics; tissue; drought; expression; protein interaction
- 文献标志码:
- A
- 摘要:
- NF-Y三聚体复合物是由NF-YA、NF-YB和NF-YC 3个不同亚基组成,为探究大豆GmNF-YB2亚基在NF-Y三聚体复合物中的作用及其对干旱胁迫的响应,本研究克隆GmNF-YB2基因,对其进行生物信息学分析和表达模式分析,并鉴定GmNF-YA10与GmNF-YB2蛋白之间的互作关系。结果表明:GmNF-YB2基因序列全长1 109 bp,编码区长498 bp,编码165个氨基酸。预测该蛋白分子量为18.19 kD,理论等电点6.10,进化树分析发现其与AtNF-YB2和AtNF-YB3处于同一分支。转录组数据和组织表达模式分析发现GmNF-YB2基因在检测的所有组织中均有表达,其中在子叶和叶片中的表达量较高;干旱胁迫时叶片中的表达量降低。酵母双杂交分析表明GmNF-YA10和GmNF-YB2之间不存在蛋白互作关系。
- Abstract:
- The NF-Y trimer complex is composed of 3 different subunits, NF-YA, NF-YB and NF-YC. In order to explore the interaction between soybean GmNF-YB2 subunits in the NF-Y trimer complex and the response to drought stress, in this study, we cloned GmNF-YB2 gene, performed bioinformatics analysis and expression pattern analysis, and identified the protein interaction relationship between GmNF-YA10 and GmNF-YB2. The results showed that GmNF-YB2 gene was 1 109 bp in length, with a coding region of 498 bp, and encoding 165 amino acids. The molecular weight of the protein was predicted to be 18.19 kD and the theoretical isoelectric point was 6.10. The phylogenetic tree analysis showed that the protein was in the same branch with AtNF-YB2 and AtNF-YB3. Transcriptomic data and tissue expression pattern analysis showed that GmNF-YB2 gene was expressed in all the detected tissues, and the expression level was higher in cotyledons and leaves. The expression of GmNF-YB2 gene was decreased in leaves under drought stress. Yeast two-hybrid analysis showed that there was no protein interaction between GmNF-YA10 and GmNF-YB2.
参考文献/References:
[1]FAROOQ M, WAHID A, KOBAYASHI N, et al. Plant drought stress: Effects, mechanisms and management[J]. Agronomy for Sustainable Development, 2009, 29(1): 185-212.[2]THIRUMALAIKUMAR V P, DEVKAR V, MEHTEROV N, et al. NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato[J]. Plant Biotechnology Journal, 2018, 16(2): 354-366.[3]杨如萍, 包振贤, 陈光荣, 等. 大豆抗旱性研究进展[J]. 作物杂志, 2012(5):8-12. (YANG R P, BAO Z X, CHEN G R, et al. Advances in drought resistance of soybean[J]. Crops, 2012(5): 8-12.)[4]解玉玲. 干旱胁迫对大豆生理生化影响的研究进展[J]. 长沙大学学报, 2015, 29(2): 26-28. (XIE Y L. Research progress on the impacts of drought stress on soybean physiology and biochemical index[J]. Journal of Changsha University, 2015, 29(2): 26-28.)[5]王彬, 陈敏氡, 林亮, 等. 植物干旱胁迫的信号通路及相关转录因子研究进展[J]. 西北植物学报, 2020, 40(10): 1792-1806. (WANG B, CHEN M D, LIN L, et al. Signaling pathways and related transcription factors of drought stress in plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(10): 1792-1806.)[6]张利生, 陈大元. RNA干涉及其应用前景[J]. 遗传, 2003, 25(3): 341-344. (ZHANG L S, CHEN D Y. RNA interference and its promising future[J]. Hereditas, 2003, 25(3): 341-344.)[7]宋秋明, 李大勇, 张慧娟, 等. 植物NF-Y转录因子的生物学功能及其研究进展[J]. 植物生理学报, 2015, 51(5): 623-632. (SONG Q M, LI D Y, ZHANG H J, et al. NF-Y transcription factors and their biological functions in plants[J]. Plant Physiology Journal, 2015, 51(5): 623-632.)[8]LI W X, OONO Y, ZHU J, et al. The Arabidopsis NFYA5 trans-cription factor is regulated transcriptionally and post trans-criptionally to promote drought resistance[J]. Plant Cell, 2008, 20(8): 2238-2251.[9]NI Z Y, HU Z, JIANG Q Y, et al. GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress[J]. Plant Molecular Biology, 2013, 82(1-2): 113-129.[10]ZHANG T, ZHANG D, LIU Y, et al. Overexpression of a NF-YB3 transcription factor from Picea wilsonii confers tolerance to salinity and drought stress in transformed Arabidopsis thaliana[J]. Plant Physiology and Biochemistry, 2015, 94: 153-164.[11]马自飞, 宋文腾, 史美华, 等. 小麦NF-Y型转录因子基因TaNF-YC1介导烟草植株抵御渗透协迫功能研究[J]. 河北农业大学学报, 2020, 43(5): 8-14. (MA Z F, SONG W T, SHI M H, et al. Study on the function of wheat NF-Y transcription factor gene TaNF-YC1 to osmotic stress in tobacco plant[J]. Journal of Hebei Agricultural University, 2020, 43(5): 8-14.)[12]ZHAO H, WU D, KONG F, et al. The Arabidopsis thaliana nuclear factor Y transcription factors[J]. Frontiers in Plant Science, 2017, 7: 2045. [13]SATO H, MIZOI J, TANAKA H, et al. Arabidopsis DPB3-1, a DREB2A interactor, specifically enhances heat stress-induced gene expression by forming a heat stress-specific transcriptional complex with NF-Y subunits[J]. Plant Cell, 2014, 26(12): 4954-4973.[14]RPODAS C, CASTAINGTS M, CLA J, et al. The PvNF-YA1 and PvNF-YB7 subunits of the heterotrimeric NF-Y transcription factor influence strain preference in the Phaseolus vulgaris-Rhizobium etli Symbiosis[J]. Frontiers in Plant Science, 2019, 10: 221.[15]苗雅慧, 鞠丹, 梁珂豪, 等. 青杄转录因子基因PwNF-YB8的克隆与功能分析[J].林业科学, 2021, 57(5): 77-92. (MIAO Y H, JU D, LIANG K H, et al. Cloning and functional analysis of transcription factor gene PwNF-YB8 from Picea wilsoniis[J]. Scientia Silvae Sinicae, 2021, 57(5): 77-92.)[16]杜萍萍, 赵颖佳, 史桂清, 等. 小麦NF-YB型转录基因TaNF-YB4介导植株抵御干旱功能研究[J].河北农业大学学报, 2021, 44(2): 1-8. (DU P P, ZHAO Y J, SHI G Q, et al. Characteristics of wheat transcription factor gene TaNF-YB4 in mediating drought tolerance of plants[J]. Journal of Hebei Agricultural University, 2021, 44(2): 1-8.)[17]QUACH T, NGUYEN H, VALLIYODAN B, et al. Genome-wide expression analysis of soybean NF-Y genes reveals potential function in development and drought response[J]. Molecular Genetics and Genomics, 2015, 290(3): 1095.[18]MALLANO A I, LI W, TABYS D , et al. The soybean GmNFY-B1 transcription factor positively regulates flowering in transgenic Arabidopsis[J]. Molecular Biology Reports, 2021, 48(2): 1589-1599.[19]李涵哲. 大豆GmNFYB1互作蛋白分析及与干旱相关下游基因分析[D]. 哈尔滨: 东北农业大学, 2016. (LI H Z. Analysis of GmNFYB1 interaction protein and drought-related downstream genes in soybean[D]. Harbin: Northeast Agricultural University, 2016.)[20]YU Y, BAI Y, WANG P, et al. Soybean nuclear factor YA10 positively regulates drought resistance in transgenic Arabidopsis thaliana[J]. Environmental and Experimental Botany, 2020, 180: 104249.[21]白玉翠, 王萍, 倪志勇, 等. 大豆GmNF-YA11基因克隆及特征分析[J].大豆科学, 2019, 38(5): 7. (BAI Y C, WANG P, NI Z Y, et al. Cloning and characterization of GmNF-YA11 gene in soybean[J]. Soybean Science, 2019, 38(5): 7.)[22]NI Z Y, LIU N, YU Y H, et al. The cotton 70-kDa heat shock protein GhHSP70-26 plays a positive role in the drought stress response[J]. Environmental and Experimental Botany, 2021, 191: 104628.[23]LIVAK K J, SCHMITTGEN T D. Analysis of relative gene exp-ression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4): 402-408. [24]万会娜, 于月华, 王怡,等. 大豆GmNAC131基因的生物信息学及表达分析[J].大豆科学, 2021, 40(2): 9. (WANG H N, YU Y H, WANG Y, et al.[J]. Bioinformatics and expression analysis of GmNAC131 gene in soybean[J]. Soybean Science, 2021, 40(2): 9. [25]LALOUM T, BAUDIN M, FRANCES L, et al. Two CCAAT-box-binding transcription factors redundantly regulate early steps of the legume-rhizobia endosymbiosis[J]. Plant Journal for Cell & Molecular Biology, 2015, 79(5): 757-768.[26]黄俊文, 南建宗, 阳成伟. NF-Y转录因子调控植物生长发育及胁迫响应的研究进展[J].植物生理学报, 2020, 56(12): 2595-2605.(HUANG J W, NAN J Z, YANG C W. Research progress of NF-Y transcription factors in plant growth and development and stress respone[J]. Plant Physiology Journal, 2020, 56(12): 2595-2605.)[27]YANG M, ZHAO Y, SHI S, et al. Wheat nuclear factor Y (NF-Y) B subfamily gene TaNF-YB3;l confers critical drought tolerance through modulation of the ABA-associated signaling pathway[J]. Plant Cell, Tissue and Organ Culture, 2017, 128(1): 97-111.[28]XIAO H, TANG S, AN Y, et al. Overexpression of the poplar NF-YB7 transcription factor confers drought tolerance and improves water-use efficiency in Arabidopsis[J]. Journal of Experimental Botany, 2013(14): 4589-4601.[29]SATO H, SUZUKI T, TAKAHASHI F, et al. NF-YB2 and NF-YB3 have functionally diverged and differentially induce drought and heat stress-specific genes[J]. Plant Physiology, 2019, 180(3): 1677-1690.[30]王涛, 李永光, 王英琪, 等. 大豆GmNFYB1基因功能预测及表达分析[J]. 基因组学与应用生物学, 2015, 34(5):1034-1039. (WANG T, LI Y G, WANG Y Q, et al. Functional prediction and expression analysis of soybean GmNFYB1 gene[J]. Genomics and Applied Biology, 2015, 34(5): 1034-1039.)
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
备注/Memo
收稿日期:2021-08-13