|Table of Contents|

Research Progress of Nattokinase Microbial Production(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2022年06期
Page:
740-746
Research Field:
Publishing date:

Info

Title:
Research Progress of Nattokinase Microbial Production
Author(s):
GAO Meng-di SU Qian-yu LI Jie FAN Xue-jing WANG Zhao-yang DENG Li-gao LI Jian-bin
(College of Light Industry and Food Engineering, Guangxi University, Nanning 530000, China)
Keywords:
nattokinase strain screening strain mutagenesis fermentation optimization raw materials genetic engineering
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2022.06.0740
Abstract:
Nattokinase is a fibrin degrading enzyme, which was originally isolated and extracted from boiled soybeans fermented by Bacillus natto. Compared with the existing fibrinolytic enzymes, nattokinase has attracted much attention because of its strong fibrinolytic activity, high efficiency and no side effects. However, the wide application is hindered by the characteristics of large demand, low output and high cost of nattokinase. Improving the production and activity of nattokinase has always been the focus of promoting the development of nattokinase. This paper introduced the sources, commonly used screening methods and high-yield strain mutagenesis methods of nattokinase, and reviewed the research progress of microbial fermentation nattokinase fermentation conditions optimization, low-cost culture raw material substitution and genetic engineering, aiming to provide ideas for the research of high-yield nattokinase and lay the foundation for the large-scale promotion and application of nattokinase.

References:

[1]杨艳莉, 吴雪玲, 余知和. 纳豆及纳豆芽孢杆菌研究进展[J].中国调味品, 2022, 47(5): 201-205. (YANG Y Y, WU X L, YU Z H. Research progress of natto and Bacillus natto[J]. China Condiment, 2022,47(5): 201-205.)[2]赵菡. 纳豆激酶热稳定性及pH稳定性的改造研究[D]. 无锡: 江南大学, 2018. (ZHAO H. Study on modification of thermal stability and pH stability of nattokinase[D]. Wuxi: Jiangnan University, 2018.)[3]杨敏. 纳豆激酶粗提液抗血栓降血脂及抗氧化作用的研究[D]. 武汉:华中农业大学,2013. (YANG M. Study on the antithrombotic, hypolipidemic and antioxidative effects of nattokinase crude extract [D]. Wuhan: Huazhong Agricultural University,2013.)[4]毛娜娜. 纳豆激酶抗血栓作用机制的实验研究[D]. 苏州:苏州大学,2008. (MAO N N. Experimental study on the antithrombotic mechanism of nattokinase[D]. Suzhou: Suzhou University, 2008.)[5]闫泉香, 冯利, 徐峰, 等. 纳豆激酶的溶栓作用及其机制研究[J].食品工业科技,2021,42(24): 7. (YAN Q X, FENG L, XU F, et al. Study on the thrombolytic effect of nattokinase and its mechanism[J]. Technology for the Food Industry, 2021, 42(24): 7.)[6]张海粟, 王家林, 于江淼. 纳豆激酶的研究及展望[J].食品与发酵科技, 2019,55(4): 5. (ZHANG H S,WANG J L,YU J M. Research and prospect of nattokinase[J]. Food and Fermentation Technology, 2019, 55(4): 5.)[7]WU H, WANG Y, ZHANG Y P, et al. Breaking the vicious loop between inflammation, oxidative stress and coagulation, a novel anti-thrombus insight of nattokinase by inhibiting LPS-induced inflammation and oxidative stress[J]. Redox Biology, 2020,32: 101500.[8]CAO Z H, GREEN-JOHNSON J M, BUCKLEY N D, et al. Bioactivity of soy-based fermented foods: A review[J]. Biotechnology Advances, 2018, 37(1): 223-238.[9]LEE J Y, ARAVINTHAN A, PARK Y S, et al. Supplementation of a fermented soybean extract reduces body mass and prevents obesity in high fat diet-induced C57BL/6J obese mice[J]. Preventive Nutrition & Food Science, 2016, 21(3): 187-196.[10]SUZUKI〖KG(0.5mm Y, KONDO K, MATSUMOTO Y, et al. Dietary supplementation of fermented soybean, natto, suppresses intimal thickening and modulates the lysis of mural thrombi after endothelial injury in rat femoral artery[J]. Life Sciences, 2003, 73(10): 1289-1298.[11]KOU Y, FENG R,CHEN J, et al. Development of a nattokinase-polysialic acid complex for advanced tumor treatment[J]. European Journal of Pharmaceutical Sciences, 2020, 145: 105241.[12]VACHHER M, SEN A, KAPILA R, et al. Microbial therapeutic enzymes: A promising area of biopharmaceuticals[J]. Current Research in Biotechnology, 2021: 67-68.)[13]CAI D B, ZHU C J, CHEN S W. Microbial production of nattokinase: Current progress, challenge and prospect[J]. World Journal of Microbiology & Biotechnology, 2017, 33(5): 84.[14]ZHANG X, TONG Y J, WANG J, et al. Screening of a Bacillus subtilis strain producing both nattokinase and milk-clotting enzyme and its application in fermented milk with thrombolytic activity[J]. Journal of Dairy Science, 2021, 104(9): 9437-9449.[15]姚明静, 杨杨, 范婧, 等. 纳豆激酶的微生物生产及其生理功能的研究进展[J]. 食品工业科技, 2022, 43(14): 435-444. (YAO M J, YANG Y, FAN J, et al. Research progress on microbial production and physiological functions of nattokinase[J]. Technology for the Food Industry, 2022, 43(14): 435-444.)[16]ANUSREE M, SWAPNA K, AGUILAR C N, et al. Optimization of process parameters for the enhanced production of fibrinolytic enzyme by a newly isolated marine bacterium[J]. Bioresource Technology Reports, 2020, 11(17): 100436.[17]巩涛, 魏传军, 安明理, 等. 1株纳豆激酶高产菌株的分离·筛选与复合诱变研究[J]. 安徽农业科学, 2021, 49(15): 159-161, 175. (GONG T, WEI C J, AN M L, et al. Isolation, screening and compound mutagenesis of a nattokinase producing strain[J]. Anhui Agricultural Sciences, 2021, 49(15): 159-161, 175.)[18]张劭康, 卢静. 酶联免疫吸附测定技术在食品安全检测中的应用[J].中国标准化, 2009(5): 73-74. (ZHANG S K, LU J. Application of enzyme linked immunosorbent assay in food safety detection [J]. China Standardization, 2009(5): 73-74.)[19]杨明俊, 杨晓彤, 冯慧琴, 等. 两种纳豆激酶活性测定方法对比及相关性分析[J]. 食品研究与开发, 2008(2): 5. (YANG M J, YANG X T, FENG H Q, et al. Comparison of two nattokinase activity assays and correlation analysis[J]. Food Research and Development, 2008(2):5.)[20]吴锦源, 林咏珊, 高向阳, 等. 不同品种大豆发酵纳豆的功能活性差异及相关性分析[J].食品科技, 2021, 46(12): 173-178. (WU J Y, LIN Y S, GAO X Y, et al. Differences in functional activity and correlation of fermented natto of different varieties of soybean[J]. Food Technology, 2021, 46(12): 173-178.)[21]CHO Y H, SONG J Y, KIM K M, et al. Production of nattokinase by batch and fed-batch culture of Bacillus subtilis[J]. New Biotechnology, 2010, 27(4): 341-346.[22]宋文超. 高产纳豆激酶菌株筛选和纳豆激酶分离纯化及药效学研究[D]. 武汉:华中农业大学, 2013. (SONG W C. Screening of high-yield nattokinase producing strains, purification and pharmacodynamics of nattokinase[D]. Wuhan: Huazhong Agricultural University, 2013.)[23]满丽莉, 向殿军. 枯草芽孢杆菌MX-6产纳豆激酶特性分析[J]. 食品与发酵工业, 2019, 45(6): 6. (MAN L L, XIANG D J. Analysis of the characteristics of Bacillus subtilis MX-6 nattokinase[J]. Food and Fermentation Industry, 2019, 45(6): 6.)[24]王晓云, 王慧, 赵燕, 等. 紫外诱变选育高活性蛋白酶枯草芽孢杆菌及其降解饲料能力评价[J]. 中国水产科学, 2016, 23(6): 7. (WANG X Y, WANG H, ZHAO Y, et al. Evaluation of highly active protease Bacillus subtilis and its ability to degrade feed in ultraviolet mutagenesis[J]. Chinese Fishery Sciences, 2016, 23(6): 7.)[25]钱泽栋. 纳豆激酶高产菌诱变选育及发酵工艺优化[D]. 武汉:武汉工程大学, 2018. (QIAN Z D. Nattokinase high-yielding bacteria mutagenesis breeding and fermentation process optimization[D]. Wuhan: Wuhan Polytechnic University, 2018.)[26]〖ZK(薛莹莹, 林福兴, 别小妹, 等. ARTP诱变联合抗生素抗性选育纳豆激酶高产菌株[J]. 食品工业科技, 2019, 40(23): 5. (XUE Y Y, LIN F X, BIE X M, et al. ARTP mutagenesis combined with antibiotic resistance to breed high-yielding nattokinase strains[J]. Technology for the Food Industry, 2019, 40(23): 5.)[27]〖ZK(高宏. 枯草芽孢杆菌纤溶酶高产菌株选育、发酵条件优化及其分离纯化[D]. 南京: 南京农业大学, 2006. (GAO H. Bacillus subtilis plasmin high-yield strain selection, fermentation conditions optimization and separation and purification[D]. Nanjing: Nanjing Agricultural University, 2006.)[28]〖ZK(薛莹莹. 纳豆激酶高产菌株的选育及其分离纯化的研究[D].南京: 南京农业大学,2019. (XUE Y Y. Study on the selection and purification of nattokinase high-yield strains[D]. Nanjing: Nanjing Agricultural University, 2019.)[29]WANG 〖KG(0.5mmY X, WANG J, ZHANG X, et al. Genomic and transcriptomic analysis of Bacillus subtilis JNFE1126 with higher nattokinase production through ultraviolet combined 60 Co-γ ray mutagenesis[J]. Lebensmittel-Wissenschaft und-Technologie, 2021, 147: 11652.[30]李宝库. 高活性纤溶酶产生菌的筛选及发酵条件优化研究[D].保定: 河北大学, 2005. (LI B K. Screening of high activity plasmin producing bacteria and optimization of fermentation conditions [D]. Baoding: Hebei University, 2005.)[31]薛健, 王欢. 纳豆激酶生产菌的紫外诱变选育[J]. 农业与技术, 2016, 36(21): 4-5, 17. (XUE J, WANG H. Breeding of nattokinase producing strain by UV mutagenesis[J]. Agriculture and Technology, 2016, 36(21): 4-5, 17.)[32]张杰, 葛武鹏, 陈瑛, 等. 纳豆激酶高产菌株的选育及固态发酵技术[J].食品科学, 2016, 37(3): 151-156. (ZHANG J, GE W P, CHEN Y, et al. Breeding of nattokinase producing strain and solid state fermentation technology[J]. Food Science, 2016, 37(3): 151-156.)[33]高泽鑫. 高产纳豆激酶菌株的筛选及其酶学稳定性的研究[D]. 贵州: 贵州大学, 2018. (GAO Z X. Screening of high nattokinase producing strain and study on its enzymatic stability[D]. Guizhou: Guizhou University, 2018.[34]王昶. 豆豉纤溶酶高产菌株XY-1的诱变育种及产酶条件研究[D]. 武汉:华中科技大学, 2013. (WANG C. Study on mutation breeding and enzyme producing conditions of high fibrinolytic enzyme producing strain XY-1 in Douchi[D]. Wuhan: Huazhong University of Science and Technology, 2013.[35]谢定刚, 丛丽娜, 李若凡, 等. 原生质体紫外诱变选育高产抗菌脂肽菌株及其活性物质的研究[J]. 工业微生物, 2020, 50(1): 7. (XIE D G, CONG L N, LI R F, et al. Study on the selection and breeding of high-yield antimicrobial lipopeptide strains and their active substances by protoplast ultraviolet mutagenesis[J]. Industrial Microorganisms, 2020, 50(1): 7.)[36]ETHIRAJ〖KG(0.5mm S, GOPINATH S, RAVI V, et al. Enhancement of serrapeptase hyper producing mutant by combined chemical and UV mutagenesis and its potential for fibrinolytic activity[J]. Journal of Pure and Applied Microbiology, 2020, 14(2): 1295-1303.[37]KARAKUS 〖KG(0.45mmB Z, KORKMAZ I, DEMIRCI K. A combined treatment using ethylmethane sulfonate and ultraviolet light to compare amylase production by three Bacillus sp. isolates[J]. Preparative Biochemistry & Biotechnology, 2018, 48(9): 815-822.[38]MA Y, YANG H, CHEN X, et al. Significantly improving the yield of recombinant proteins in Bacillus subtilis by a novel powerful mutagenesis tool (ARTP): Alkaline α-amylase as a case study[J]. Protein Expression and Purification, 2015, 114: 82-88.[39]耿海波, 郑辉, 张丽媛, 等. 常压室温等离子体诱变选育耐酸酿酒酵母菌株[J].中国酿造, 2022,41(2): 144-148. (GENG H B, ZHENG H, ZHANG L Y, et al. Breeding of acid tolerant Saccharomyces cerevisiae strains by atmospheric and room temperature plasma mutagenesis[J]. Chinese Brewing, 2022, 41(2): 144-148.)[40]ZHANG C, QIN J F, DAI Y W, et al. Atmospheric and room temperature plasma (ARTP) mutagenesis enables xylitol over-production with yeast Candida tropicalis[J]. Journal of Biotechnology, 2019, 296: 7-13.[41]KHANEGHAH A M, MOOSAVI M H, OLIVEIRA C, et al. Electron beam irradiation to reduce the mycotoxin and microbial contaminations of cereal-based products: An overview[J]. Food and Chemical Toxicology, 2020, 143: 111557.[42]李娟宁, 吕英, 赵桂琴, 等. 化学诱变剂EMS和MNU对燕麦种子萌发和幼苗生长的影响[J]. 草原与草坪, 2021, 41(3):11. (LI J N, LYU Y, ZHAO G Q, et al. Effects of chemical mutagens EMS and MNU on oat seed germination and seedling growth[J]. Prairie and Lawn, 2021, 41(3): 11.)[43]臧学丽. 纳豆激酶生产菌的亚硝基胍诱变[J].中国农业信息, 2016(20): 134. (ZANG X L. Mutagenesis of nattokinase producing strain by nitrosoguanidine[J]. China Agricultural Information, 2016(20): 134.)[44]牛春华, 迟燕平, 高岩, 等. 高产蛋白酶枯草芽孢杆菌JAASB的多种诱变选育[J]. 食品工业, 2013, 34(5): 159-163. (NIU C H, CHI Y P, GAO Y, et al. Multiple mutagenesis breeding of high protease protease Bacillus subtilis JAASB[J]. Food Industry, 2013, 34(5): 159-163.)[45]李雪平, 金珂, 张向军. 化学诱变剂诱变植物的研究进展[J]. 现代农业, 2019(2): 2. (LI X P, JIN K, ZHANG X J. Research progress on chemical mutagens mutagen plants[J]. Modern Agriculture, 2019(2): 2.)[46]卞承荫, 黄舒婷, 潘大仁, 等. 利用紫外线和EMS诱变选育高产枯草芽孢杆菌[J]. 福建农林大学学报(自然科学版), 2014, 43(3): 312-315. (BIAN C Y, HUANG S T, PAN D R, et al. High-yielding Bacillus subtilis was selected and bred using ultraviolet and EMS mutagenesis[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2014, 43(3): 312-315.)[47]杨子琼, 李迪文, 赵小斌, 等. 纳豆激酶高产菌株的复合诱变选育[J]. 武汉工程大学学报, 2022, 44(1): 5. (YANG Z Q, LI D W, ZHAO X B, et al. Compound mutagenesis of high-yielding nattokinase strains[J]. Journal of Wuhan Polytechnic University, 2022, 44(1): 5.)[48]DEEPAK V, KALISHWARALAL K, RAMKUMARPANDIAN S, et al. Optimization of media composition for nattokinase production by Bacillus subtilis using response surface methodology[J]. Bioresource Technology, 2008, 99(17): 8170-8174.[49]田莉, 卢轶男, 朱建, 等. 产纳豆激酶的枯草芽孢杆菌基因工程菌发酵条件的响应面优化[J]. 武汉工程大学学报, 2018, 40(6):8. (TIAN L, LU Y N, ZHU J, et al. Optimization of the response surface of nattokinase-producing Bacillus subtilis gene-engineered bacteria under fermentation conditions[J]. Journal of Wuhan Polytechnic University, 2018, 40(6): 8.)[50]庞远祥, 谢远红, 金君华, 等. 低嘌呤,高纳豆激酶活性枯草芽孢杆菌SH21筛选及发酵条件优化[J]. 食品与发酵工业, 2021, 47(11): 6. (PANG Y X, XIE Y H, JIN J H, et al. Screening and optimization of fermentation conditions for low purine and high nattokinase activity Bacillus subtilis SH21[J]. Food and Fermentation Industry, 2021, 47(11): 6.)[51]NGUYEN T, CONG H N. Determination of factors affecting the protease content generated in fermented soybean by Bacillus subtilis 1423[J]. Energy Reports, 2020, 6(S1): 831-836. [52]〖KG(0.1mm满丽莉, 向殿军. 响应面法优化枯草芽孢杆菌MX-6产纳豆激酶发酵条件[J]. 食品研究与开发, 2019, 40(21): 6. (MAN L L, XIANG D J. The response surface method optimizes the fermentation conditions of Bacillus subtilis MX-6 nattokinase-producing[J]. Food Research and Development, 2019, 40(21): 6.)[53]周雪琴, 刘良忠. 枯草芽孢杆菌筛选及其产纳豆激酶的液态发酵条件优化[J]. 食品工业科技, 2022, 43(7): 163-169. (ZHOU X Q, LIU L Z. Screening of Bacillus subtilis and optimization of liquid fermentation conditions for nattokinase-producing[J]. Technology for the Food Industry, 2022, 43(7): 163-169.)[54]NA G, SONG X R, PING K, et al. Optimization of fermentation parameters with magnetically immobilized Bacillus natto on ginkgo seeds and evaluation of bioactivity and safety[J]. LWT, 2018, 97: 172-179.[55]SAHOO A, MAHANTY B, DAVEREY A, et al. Nattokinase production from Bacillus subtilis using cheese whey: Effect of nitrogen supplementation and dynamic modelling[J]. Journal of Water Process Engineering, 2020, 38: 101533.[56]WANG S L, CHEN H J, LIANG T W, et al. A novel nattokinase produced by Pseudomonas sp. TKU015 using shrimp shells as substrate[J]. Process Biochemistry, 2009, 44(1): 70-76.[57]PAN S H, CHEN G G, ZENG J J, et al. Fibrinolytic enzyme production from low-cost substrates by marine Bacillus subtilis: Process optimization and kinetic modeling[J]. Biochemical Engineering Journal, 2019, 141: 268-277.[58]ANUSREE M, SWAPNA K, AGUILAR C N, et al. Optimization of process parameters for the enhanced production of fibrinolytic enzyme by a newly isolated marine bacterium[J]. Bioresource Technology Reports, 2020, 11(17): 100436.[59]韩宇星, 孟凡强, 周立邦, 等. 通过敲除聚谷氨酸合成基因提高纳豆杆菌纳豆激酶的生产效率[J].食品与发酵工业, 2022,48(2): 224-230. (HAN Y X, MENG F Q, ZHOU L B, et al. The production efficiency of natto bacillus nattokinase was improved by knocking out polyglutamic acid synthesis genes[J]. Food and Fermentation Industry, 2022,48(2): 224-230.)[60]李佳增. 纳豆激酶毕赤酵母X33高效表达双启动子系统构建及发酵条件优化[D]. 沈阳:辽宁大学, 2021. (LI J Z. Construction of a highly efficient expression bifoton system for nattokinase Pichia X33 and optimization of fermentation conditions[D]. Shenyang: Liaoning University, 2021.)[61]赵菡, 周丽, 周哲敏. 通过定点突变提高纳豆激酶的酶活及热稳定性[J]. 食品与发酵工业, 2018, 44(9): 36-40, 47. (ZHAO H, ZHOU L, ZHOU Z M. The enzymatic activity and thermal stability of nattokinase are improved by site-directed mutations[J]. Food and Fermentation Industry, 2018, 44(9): 36-40, 47.)

Memo

Memo:
-
Last Update: 2022-11-29