|Table of Contents|

Physiological and Biochemical Characteristics of EMS Mutagenic Soybean under Drought Stress(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2022年06期
Page:
703-709
Research Field:
Publishing date:

Info

Title:
Physiological and Biochemical Characteristics of EMS Mutagenic Soybean under Drought Stress
Author(s):
FU Xiao-hong1 DONG Li-jun1LUO Jia-yu1 ZHAO Lin1 SUN Yong-yuan2 YUAN Hui-xuan1 LIU Jian-feng1
(1.College of Life Science, Hebei University, Baoding 071002, China; 2.Cangzhou Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Crop Salt-alkali Stress Tolerance Evaluation and Genetic Improvement, Cangzhou 061001, China)
Keywords:
soybean drought stress EMS mutagenesis defense enzyme anatomical structure
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2022.06.070
Abstract:
In order to analyze the physiological and biochemical characteristics of drought-tolerant soybean plants after the chemical mutagen agent ethylmethane sulfonate (EMS) mutagenesis, and to explore the feasibility of EMS mutagenesis to breed drought-resistant soybean materials, this study used the first-class drought-resistant variety Fendou 93 as the material, treated it with EMS mutagenesis, screened the better-growing EMS mutagenic plants and carried out drought stress. Then we investigated the growth status of plants, analyzed physiological and biochemical indicators, and observed the changes in tissue anatomy with paraffin sectioning.Under normal treatment, phenotypic differences between control and EMS plants were not significant. Under PEG drought treatment, the leaves of the control plants significantly wilted and withered, while the EMS plants grew well. The biomass of shoot and root was significantly higher than that of the control plant. The activities of superoxide dismutase (SOD) and peroxidase (POD) in the leaves were 1.30-1.41 times and 1.23-1.38 times of the control plant, respectively. The contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA) were 0.56-0.65 times and 0.55-0.69 times of the control plant. From that anatomical structure of the plant tissue, the paraffin sections of the leave and roots of the EMS plant were complete in tissue structure and uniform in staining relatively. The thickness of that upper epidermis, the low epidermis and the palisade tissue of the leaves were about 1.71, 1.81 and 1.65 times of the control plant, respectively. The thickness of spongy tissue was about 0.32 times of the control plant. The thickness of root epidermis and cortex was about 0.33 and 0.36 times of the control plant. The thickness of xylem and phloem was 1.25 and 1.65 times of control, respectively. EMS mutagenesis can obtain soybean plants that can respond to drought stress through physiological biochemical changes and tissue structure changes, which can be used for further selection and breeding of drought-resistant soybean materials.

References:

[1]李傲辰.大豆的主要营养成分及营养价值研究进展[J]. 现代农业科技, 2020(23): 213-214,218. (LI A C. Main nutrientional components and values of soybean[J]. Modern Agricultural Science and Technology, 2020(23): 213-214,218.)[2]DU W J, YU D Y, FU S X. Detection of quantitative trait loci for yield and drought tolerance traits in soybean using a recombinant inbred line population[J]. Journal of Integrative Plant Biology, 2009, 51(9): 868-878.[3]王伟, 姜伟, 张金龙, 等. 大豆种质的耐旱性鉴定及耐旱指标筛选[J]. 大豆科学, 2015, 34(5): 808-818. (WANG W, JIANG W, ZHANG J L, et al. Selection of drought-tolerant soybean and evaluation of the drought tolerance indices[J]. Soybean Science, 2015, 34(5): 808-818.)[4]周红霞. 大豆种质芽苗期耐旱性评价及全基因组关联分析[D].太谷:山西农业大学, 2015. (ZHOU H X. Evaluation of soybean drought tolerance during seedling stage and association analysis[D].Taigu: Shanxi Agricultural University, 2015.)[5]OYA T, NEPOMUCENO A L, NORMAN N, et al. Drought tolerance characteristics of Brazilian soybean cultivars[J]. Plant Production Science, 2004, 7(2): 129-137.[6]秦彬. 外源褪黑素对大豆苗期干旱的缓解效应[D/OL]. 黑龙江: 黑龙江八一农垦大学, 2021. DOI: 10.27122/d.cnki.ghlnu.2021.000081. (QIN B. Regulation of exogenous melatonin on drought resistance of soybean seedings under drought stress[D/OL]. Heilongjiang: Heilongjiang Bayi Agricultural University, 2021. 10.27122/d.cnki.ghlnu.2021.000081.)[7]赵成凤, 王晨光, 李红杰, 等. 干旱及复水条件下外源褪黑素对玉米叶片光合作用的影响[J]. 生态学报, 2021, 41(4): 1431-1439. (ZHAO C F, WANG C G, LI H J, et al. Effects of exogenous melatonin on photosynthesis of maize leaves under drought stress and rewatering[J]. Acta Ecologica Sinica, 2021, 41(4): 1431-1439.)[8]张野, 张瀚竹, 杜叶垚, 等. 过表达GmXTH1基因大豆对干旱胁迫的生理生化响应[J]. 大豆科学, 2021, 40(3): 327-333. (ZHANG Y, ZHANG H Z, DU Y M, et al. Physiological and biochemical responses of GmXTH1 overexpression soybean to drought stress at seedling stage[J]. Soybean Science, 2021, 40(3): 327-333.)[9]张小琴, 张媛铃, 李炳言,等. CO2浓度升高对大豆干旱胁迫的缓解效应[J]. 应用生态学报, 2021, 32(1):182-190. (ZHANG X Q, ZHANG Y L, LI B Y, et al. Elevated CO2 concentration mitigate the effects of drought stress on soybean[J]. Journal of Applied Ecology, 2021, 32(1):182-190.)[10]张瑞成, 李魏, 潘素君, 等. 化学诱变在种质资源改良上的应用[J]. 分子植物育种, 2017, 15(12): 5189-5196. (ZHANG R C, LI W, PAN S J, et al. Application of chemical mutagenesis in improving germplasm resource[J]. Molecular Plant Breeding, 2017, 15(12): 5189-5196.)[11]温日宇, 刘建霞, 肖东东,等. EMS诱变对藜麦种子萌发及幼苗生理特性的影响[J/OL]. 分子植物育种,2022[2022-11-01]. (WEN R Y, LIU J X, XIAO D D, et al. Effects of EMS mutagenesis on seed germination and physiological characteristics of Quinoa seedings[J/OL]. Molecular Plant Breeding, 2022[2022-11-01].http://kns.cnki.net/kcms/detail/46.1068.S.20211015.1433.016.html.)[12]薛芳, 褚洪雷, 胡志伟, 等. EMS对新春11小麦抗性淀粉和农艺性状的诱变效果[J]. 麦类作物学报, 2010, 30(3): 431-434. (XUE F, ZHU H L, HU Z W, et al. Mutation effect on resistant starch content and agronomic traits of Xinchun 11 treated by EMS[J]. Journal of Triticeae Crops, 2010, 30(3): 431-434.)[13]冯悟一, 王楠, 李朔, 等. 大豆EMS突变体种子品质鉴定[J]. 齐鲁工业大学学报(自然科学版), 2016, 30(2): 22-26. (FENG W Y, WANG N, LI S, et al. Examination of seeds quality EMS mutants in soybean[J]. Journal of Qilu University of Technology(natural science edition), 2016, 30(2): 22-26.)[14]郭玉虹, 王培英, 张军政. EMS对大豆的诱变效应[J]. 核农学通报, 1994(4): 162-164. (GUO Y H, WANG P Y, ZHANG J Z. Mutagenic effect of EMS on soybean[J]. Journal of Nuclear Agriculture Science, 1994(4): 162-164.)[15]沙国飞, 鲁敏, 安华明. EMS诱变对刺梨种子出苗及早期生长性状的影响[J]. 北方园艺, 2022(2): 33-39. (SHA G F, LU M, AN H M. Effects of mutagenesis on Rosa roxburghii Tratt. seed emergence and its early growth traits[J]. Northern Horticulture, 2022(2): 33-39.[16]邹杭. 硫化氢信号分子在大豆-根瘤菌共生固氮体系中的调控作用及其机制研究[D]. 西安: 西北农林科技大学, 2019. (ZOU H. Regulation and mechanism of hydrogen sulfide signaling molecule in soybean-rhizobia symbiotic nitrogen fixation system[D]. Xian: Northwest A & F University, 2019.)[17]谢圣男, 王宏光, 杨振,等. 大豆绥农14突变体库构建及株高性状分析[J]. 核农学报, 2013, 27(3): 307-313. (XIE S N, WANG H G, YANG Z, et al. Construction of Suinong 14 mutant library and analysis of soybean height mutant[J]. Journal of Nuclear Agricultural Journal, 2013, 27(3): 307-313.)[18]HUA W, TAN C, XIE Z D, et al. Alternative splicing of a barley gene results in an excess-tillering and semi-dwarf mutant[J].Theoretical and Applied Genetics,2020, 133: 163-177.[19]HAN S Y, ZHOU X M, SHI L, et al. The AhNPR3 regulates the gene expression of WRKY and PR genes, and mediate the immune response of peanut (Arachis hypogaea L.)[J/OL]. Plant Journal, 2022[2022-10-25]. http://doi.org/10.1111/tpj.15700.[20]CHEN C, CUI Q Z, HUANG S W, et al. An EMS mutant library for cucumber[J]. Journal of Integrative Agriculture, 2018, 17(7): 1612-1619.[21]SALEHI-LISAR S Y, BAKHSHAYESHAN-AGDAM H. Drought stress in plants:Causes, consequences, and tolerance[J]. Drought Stress Tolerence Plants, 2016, 1: 1-16.[22]陶雨佳, 李蕾, 任宗梁, 等. 弱干旱下H2O2稳态调控大豆抗旱性的信号作用研究[J].中国油料作物学报, 2022,44(3): 602-609. (TAO Y J, LI L, REN Z L, et al. Regulation of signaling of H2O2 homeostasis under mild drought on drought resistance of soybean[J]. Chinese Journal of Oil Crop Sciences, 2022,44(3): 602-609.)[23]杨秀丽, 宁东贤, 周红琴, 等. 干旱胁迫下EMS诱变花生后代突变体萌发期抗旱性评价[J]. 山西农业科学, 2021, 49(7): 817-821. (YANG X L, NING D X, ZHOU H Q, et al. Evaluation of drought resistance in the germination period of mutants induced by chemical mutagenesis under drought stress[J]. Journal of Shanxi Agricultural Sciences, 2021, 49(7): 817-821.)[24]时忠杰, 胡哲森, 李荣生. 水分胁迫与活性氧代谢[J]. 贵州大学学报(农业与生物科学版), 2002(2): 140-145. (SHI Z J, HU Z S, LI R S. Water stress and active oxygen metabolism[J]. Journal of Guizhou University (Agricultural and Biological Science), 2002(2): 140-145.)[25]武银玉, 曹亚萍, 范绍强. 小麦EMS诱变材料的抗旱性评价[J]. 山西农业科学, 2020, 48(8): 1185-1188,1197. (WU Y Y, CAO Y P, FAN S Q. Drought resistance evaluation of EMS mutagenic materials in wheat[J]. Shanxi Agricultural University, 2020, 48(8): 1185-1188,1197.)[26]张恒友. EMS诱变大豆突变体的鉴定与大豆开花调控基因GmSVP1和GmOFP1的克隆及功能分析[D]. 南京: 南京农业大学, 2011. (ZHANG H Y. Identification of mutants induced by EMS, cloning and functional analysis of flowering regulating genes GmSVP1 and GmOFP1 in soybean[D]. Najing: Nanjing Agricultural University, 2011.)

Memo

Memo:
-
Last Update: 2022-11-29