|Table of Contents|

omprehensive Evaluation and Identification Index Screening of Shade Tolerance of Intercropping Soybean in Guangxi(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2022年06期
Page:
645-653
Research Field:
Publishing date:

Info

Title:
omprehensive Evaluation and Identification Index Screening of Shade Tolerance of Intercropping Soybean in Guangxi
Author(s):
TANG Fu-yue LIANG Jiang GOU Xiao-hong WEI Qing-yuan CHEN Wen-jie CHEN Yuan
(Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences/Nanning Comprehensive Station of Nation Soybean Industry Technology, Nanning 530007, China)
Keywords:
soybean shade tolerance principal components analysis membership function method system cluster analysis stepwise regression analysis method
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2022.06.0645
Abstract:
This research aimed to explore the shade tolerance characteristics and identification index of soybean varieties(lines), and establish a relatively accurate, stable and efficient mathematical model for evaluating shade tolerance of soybean. There were two treatments (intercropping of soybean and maize;pure planting) with 36 soybean varieties(lines) as experimental materials. Eleven single character indexes were used as the data of shade tolerance coefficient, and the shade tolerance of soybean was comprehensively evaluated by using principal component analysis, membership function method, systematic clustering and stepwise regression analysis.The results showed as follows, the evaluation value of comprehensive shade tolerance was calculated by membership function method and analyzed by cluster analysis, 36 soybean varieties(lines) were divided into three categories: Strong shade tolerance (two varieties), medium shade tolerance (nine varieties) and weak shade tolerance (25 varieties/lines) . The shade tolerance coefficient of eleven single trait indexes took as independent variable and D value as dependent variable, the optimal regression equation was established by stepwise regression analysis: D=-0.585+0.662x2+0.152x3+0.084x5+0.211x8(R=0.962,R2=0.915,SD=0.036 16). The lowest of pod height, nodes number of main stem, pods number per plant and seeds number per pod were selected as the identification indexes of soybean shade tolerance under intercropping of corn and soybean strip compound planting in Guangxi.Keywords: soybean; shade tolerance; principal components analysis; membership function method; system cluster analysis; stepwise regression analysis method

References:

[1]KOCHIAN L V, PIEROS M A, LIU J, et al. Plant adaptation to acid soils: The molecular basis for crop aluminum resistance[J]. Annual Review of Plant Biology, 2015, 66(1): 571-598.[2]徐仁扣, 李九玉, 周世伟, 等. 我国农田土壤酸化调控的科学问题与技术措施[J]. 中国科学院院刊, 2018, 33(2): 160-167. (XU R K, LI J Y, ZHOU S W, et al. Scientific issues and controlling strategies of soil acidification of croplands in China[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 160-167.)[3]ALMEIDA G H G D, SIQUEIRA-SOARES R D C, MOTA T R, et al. Aluminum oxide nanoparticles affect the cell wall structure and lignin composition slightly altering the soybean growth[J]. Plant Physiology and Biochemistry, 2021, 159: 335-346.[4]SILVA C O, BRITO D S, DA SILVA A A, et al. Differential accumulation of aluminum in root tips of soybean seedlings[J]. Brazilian Journal of Botany, 2020, 43(1): 99-107.[5]YANG J L, FAN W, ZHENG S J. Mechanisms and regulation of aluminum-induced secretion of organic acid anions from plant roots[J]. Journal of Zhejiang University Science B, 2019, 20(6): 513-527.[6]孟赐福, 傅庆林, 水建国, 等. 土壤酸度对大豆、油菜生长和产量的影响[J]. 中国农业科学, 1994, 27(3): 63-70. (MENG C F, FU Q L, SHUI J G, et al. Growth and yield of soybeans and rapeseed to soil acidity[J]. Scientia Agricultura Sinica, 1994, 27(3): 63-70.)[7]GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010.[8]杨丹,朱满德. 我国大豆生产格局与区域比较优势演变探析[J]. 国土与自然资源研究, 2020(1): 58-64. (YANG D, ZHU M D. Analysis on the evolution of soybean production patterns and regional comparative advantages in China[J]. Territory & Natural Resources Study, 2020(1): 58-64.)[9]刘莹, 盖钧镒, 吕慧能. 大豆根区逆境耐性的种质鉴定及其与根系性状的关系[J]. 作物学报, 2005, 31(9): 1132-1137. (LIU Y, GAI J Y, LYU H N. Identification of rhizosphere abiotic stress tolerance and related root traits in soybean [Glycine max (L.) Merr.][J]. Acta Agronomica Sinica, 2005, 31(9): 1132-1137.〖ZK)〗[10]齐波, 赵团结, 盖钧镒. 中国大豆种质资源耐铝毒性的变异特点及优选[J]. 大豆科学, 2007, 26(6): 813-819. (QI B, ZHAO T J, GAI J Y. Characterization of variation and identification of elite accessions of aluminum toxin tolerance soybean germplasm in China[J]. Soybean Science, 2007, 26(6): 813-819.)[11]刘德兴, 年海, 杨存义, 等. 耐酸铝大豆品种资源的筛选与鉴定[J]. 大豆科学, 2013, 32(1): 46-49. (LIU D X, NIAN H, YANG C Y. Screening and identifying soybean germplasm tolerant to acid aluminum[J]. Soybean Science, 2013, 32(1): 46-49.)[12]汪明华, 李佳佳, 陆少奇, 等. 大豆品种耐高温特性的评价方法及耐高温种质筛选与鉴定[J]. 植物遗传资源学报, 2019, 20(4): 891-902. (WANG M H, LI J J, LU S Q, et al. construction of evaluation standard for tolerance to high-temperature and screening of heat-tolerant germplasm resources in soybean[J]. Journal of Plant Genetic Resources, 2019, 20(4): 891-902.)[13]靳路真, 王洋, 张伟, 等. 大豆品种(系)耐热性鉴定及分级评鉴[J]. 中国油料作物学报, 2016, 38(1): 77-87. (JIN L Z, WANG Y, ZHANG W, et al. Grading evaluation on heat-tolerance in soybean and identification of heat-tolerant cultivars[J]. Chinese Journal of Oil Crop Sciences, 2016, 38(1): 77-87.)[14]张海平, 张俊峰, 陈妍, 等. 大豆种质资源萌发期耐旱性评价[J]. 植物遗传资源学报, 2021, 22(1): 130-138. (ZHANG H P, ZHANG J F, CHEN Y, et al. Identification and evaluation of soybean germplasm resources for drought tolerance during germination stage[J]. Journal of Plant Genetic Resources, 2021, 22(1): 130-138.)[15]王鹏, 侯思宇, 温宏伟, 等. 干旱胁迫对滞绿大豆种子萌发的影响及芽期抗旱性评价[J]. 大豆科学, 2021, 40(1): 68-74. (WANG P, HOU S Y, WEN H W, et al. Effects of drought stress on seed germination and evaluation of drought resistance in bud stage of stay-green soybean[J]. Soybean Science, 2021, 40(1): 68-74.)[16]石广成, 杨万明, 杜维俊, 等. 大豆耐盐种质的筛选及其耐盐生理特性分析[J]. 生物技术通报, 2021, 38(4): 174-183. (SHI G C, YANG W M, DU W J, et al. Screening of salt-tolerant soybean germplasm and analysis of physiological characteristics of its salt tolerance[J]. Biotechnology Bulletin, 2021, 38(4): 174-183.[17]武海燕, 李喜焕, 李文龙, 等. 大豆耐低磷性状鉴定及优异种质筛选[J]. 河南农业科学, 2020, 49(1): 61-67. (WU H Y, LI X H, LI W L, et al. Identification of low phosphorus tolerant traits and selection of elite genotypes in soybean[J]. Journal of He′nan Agricultural Sciences, 2020, 49(1): 61-67.)[18]李德华, 贺立源, 刘武定. 玉米自交系耐铝性评价及根系形态解剖特征[J]. 作物学报, 2004, 30(9): 947-952. (LI D H, HE L Y, LIU W D. The Al-tolerance evaluation and anatomical characteristics of roots in inbred lines of maize[J]. Acta Agronomica Sinica, 2004, 30(9): 947-952.)[19]LIU J, WANG X, WANG N, et al. Comparative analyses reveal peroxidases play important roles in soybean tolerance to aluminum toxicity[J]. Agronomy, 2021, 11: 670.[20]ZHAO L, CUI J, CAI Y, et al. Comparative transcriptome analysis of two contrasting soybean varieties in response to aluminum toxicity[J]. International Journal of Molecular Sciences, 2020, 21(12): 4316.[21]熊洁, 丁戈, 陈伦林, 等. 不同基因型油菜耐铝性及其根系形态对铝胁迫的响应[J]. 中国油料作物学报, 2021, 43(4): 673-682. (XIONG J, DING G, CHEN L L, et al. Aluminum tolerance and root morphology response from different rapeseed cultivars under aluminum stress[J]. Chinese Journal of Oil Crop Sciences, 2021, 43(4): 673-682.)[22]LI Y, YE H, SONG L, et al. Identification and characterization of novel QTL conferring internal detoxification of aluminium in soybean[J]. Journal of Experimental Botany, 2021, 72(13): 4993-5009.[23]应小芳, 刘鹏, 徐根娣, 等. 大豆耐铝毒基因型筛选及筛选指标的研究[J]. 中国油料作物学报, 2005, 27(1): 46-51. (YING X F, LIU P, XU G D, et al. Screening of soybean genotypes with tolerance to aluminum toxicity and study of the screening indices[J]. Chinese Journal of Oil Crop Sciences, 2005, 27(1): 46-51.)[24]刘莹, 盖钧镒. 大豆耐铝毒的鉴定和相关根系性状的遗传分析[J]. 大豆科学, 2004, 23(3): 164-168. (LIU Y, GAI J Y. Identification of tolerance to aluminum toxin and inheritance of related root traits in soybeans [Glycine max (L.) Merr.][J]. Soybean Science, 2004, 23(3): 164-168.)[25]郑阳霞, 赵善梅, 向前, 等. 铝胁迫对豆瓣菜生理特性及营养元素吸收的影响[J]. 甘肃农业大学学报, 2019, 54(4): 83-91. (ZHENG Y X, ZHAO S M, XIANG Q, et al. Effects of aluminum stress on physiological and biochemical characteristics and nutrient element absorption of watercress[J]. Journal of Gansu Agricultural University, 2019, 54(4): 83-91.)[26]崔翠, 程闯, 赵愉风, 等. 52份豌豆种质萌发期耐铝毒性的综合评价与筛选[J]. 作物学报, 2019, 45(5): 798-805. (CUI C, CHENG C, ZHAO Y F, et al. Screening and comprehensive evaluation of aluminum-toxicity tolerance during germination stage in 52 varieties (lines) of pea germplasm[J]. Acta Agronomica Sinica, 2019, 45(5): 798-805.)[27]田聪, 张烁, 粟畅, 等. 铝胁迫下大豆根系有机酸积累的特性[J]. 大豆科学, 2017, 36(2): 256-261. (TIAN C, ZHANG S, SU C, et al. Effects of aluminum (Al) on organic acid accumulation in soybean roots[J]. Soybean Science, 2017, 36(2): 256-261.)[28]刘鹏, YANG Y S, 徐根娣, 等. 铝胁迫对大豆幼苗根系形态和生理特性的影响[J]. 中国油料作物学报, 2004, 26(4): 51-56. (LIU P, YANG Y S, XU G D, et al. The effect of aluminum stress on morphological and physiological characteristics of soybean root of seedling[J]. Chinese Journal of Oil Crop Sciences,2004, 26(4): 51-56.) [29]ZHOU H W, XIAO X J, ASJAD A, et al. Integration of GWAS and transcriptome analyses to identify SNPs and candidate genes for aluminum tolerance in rapeseed (Brassica napus L.)[J]. BMC Plant Biology, 2022, 22(1): 130.[30]郜欢欢, 叶桑, 王倩, 等. 甘蓝型油菜种子萌发期耐铝毒特性综合评价及其种质筛选[J]. 作物学报, 2019, 45(9): 1416-1430. (GAO H H, YE S, WANG Q, et al. Screening and comprehensive evaluation of aluminum-toxicity tolerance during seed germination in Brassca napus[J]. Acta Agronomica Sinica, 2019, 45(9): 1416-1430.)[31]慈敦伟, 丁红, 张智猛, 等. 花生耐盐性评价方法的比较与应用[J]. 花生学报, 2013, 42(2): 28-35. (CI D W, DING H, ZHANG Z M, et al. Comparison and application of different evaluation methods on peanut salt tolerance[J]. Journal of Peanut Science, 2013, 42(2): 28-35.)

Memo

Memo:
-
Last Update: 2022-11-29