|Table of Contents|

Effects of Wide and Narrow Planting Patterns on Growth and Yield of Soybean(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2022年05期
Page:
557-563
Research Field:
Publishing date:

Info

Title:
Effects of Wide and Narrow Planting Patterns on Growth and Yield of Soybean
Author(s):
QI Si-yuan WANG Fu-lin LAN Jia-wei
(College of Engineering, Northeast Agricultural University, Harbin 150030, China)
Keywords:
soybean planting pattern growth tendency leaf area index dry matter accumulation
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2022.05.0557
Abstract:
In order to explore the effects of cultivation patterns on growth tendency and yield of soybean in Nenjiang, discover the best field planting patterns for the region, Heinong 43 was used as material, seven different cultivation patterns were established, and we analyzed the changing trends of leaf area index(LAI), dry matter accumulation and distribution in different growing stages and the yield. The results showed that planting patterns had significant effects on soil moisture content, the average soil moisture content of large ridge planting in the whole growth period was higher than that of conventional ridge planting and flat sowing. In the growing stages, LAI and dry matter accumulation of soybean increased firstly and then decreased. The yield of ridge tillage was higher than flat planting. With the same row spacing, increasing ridge width will increased soybean yield. And with the same ridge width, the wide-narrow row treatment could increase the soybean yield. The grey correlation analysis showed, the seeds number per plant had the greatest impact on soybean yield.Under the treament four rows of wide-narrow on the 130 cm ridge, pods number per plant, seeds number per plant, and seeds weight per plant were the best. The final yield was 3 678.15 kg?ha-1, it was 301%, 5.95% and 13.20% higher than large-ridge planting and small-ridge management, four rows of same row spacing on the 130 cm ridge, and three rows of same row spacing on the 110 cm ride, compared with other big ridge pattern. It was 797% higher than that of 65 cm conventional ridge tillage. In conclusion, under this experiment condition, four rows of wide-narrow on the 130 cm ridge was the suitable field configuration in Nenjiang.

References:

[1]陈伟,朱俊峰,田国强. 中美贸易摩擦对中国大豆的影响及对策分析[J]. 大豆科学, 2019, 38(1): 118-123. (CHEN W, ZHU J F, TIAN G Q. The impact and countermeasures analysis of sino-US trade friction on China′s soybean[J].Soybean Science, 2019, 38(1): 118-123.)[2]翟喜海. 黑龙江省大豆主要栽培模式及关键技术[J]. 中国农学通报, 2009, 25(12): 85-90. (ZHAI X H. Main type and key technology of soybean cultivation in Heilongjiang Province[J].Chinese Agricultural Science Bulletin, 2009, 25(12): 85-90.)[3]COOPER R L. Response of soybean cultivars to narrow rows and planting rates under weed-free conditions[J]. Agronomy Journal, 1977, 69(1): 89-92.[4]张国军,梁贵林,陈德恩,等.三江平原主要大豆栽培技术模式的产量与效益分析[J].农学学报, 2012, 2(8): 1-7. (ZHANG G J, LIANG G L, CHEN D E, et al. Yield and economic benefit analysis on major soybean planting modes in the sanjiang plain of Heilongjiang Province[J]. Journal of Agriculture, 2012, 2(8): 1-7.)[5]郭玉. 几种大豆高产栽培模式的比较[J]. 大豆科学, 1988,7(4): 285-292. (GUO Y. The comparison of several models of high-yield cultvation models of soybean[J].Soybean Science, 1988,7(4): 285-292.)[6]王晶英,周勋波,杨方人. 大豆“暗垄密”高产栽培新技术[J]. 黑龙江农业科学, 2001(4): 43-44.(WANG J Y, ZHOU X B, YANG F R. A new technique for high-yielding cultivation of soybean[J].Heilongjiang Agricultural Science, 2001(4): 43-44.)[7]肖佳雷,王贵江,来永才,等. 大豆大垄平台增密保墒增产机理的研究[J]. 中国种业, 2012, 208(7): 39-41.(XIAO J L, WANG G J, LAI Y C, et al. Studyon density increasing, moisture conservation and yield increasing mechanism of soybean wide-ridge cultivation[J].China Seed Industry, 2012, 208(7): 39-41.)[8]张永强,张娜,唐江华,等. 密度对北疆复播大豆生长动态及产量的影响研究[J]. 新疆农业大学学报, 2014, 37(1): 7-11.(ZHANG Y Q, ZHANG N, TANG J H, et al. Effects of planting density on yield and growth tendency of summer soybean in North Xinjiang[J]. Journal of Xinjiang Agricultural University, 2014, 37(1): 7-11.)[9]彭姜龙,张永强,唐江华,等. 株行距配置对夏大豆光合特性及产量的影响[J]. 大豆科学, 2015, 34(5): 794-800, 807.(PENG J L, ZHANG Y Q, TANG J H, et al. Effect of plant-row spacing on photosynthetic characteristics and yield of summer soybean[J]. Soybean Science, 2015, 34(5): 794-800, 807.)[10]张荣贵,宋宇. 大豆叶面积、净光合生产率与产量的相关性[J]. 中国农业科学, 1979(2): 40-46.(ZHANG R G, SONG Y. Correlation of leaf area and net photosynthesis rate to the yield of soybean[J]. Chinese Agricultural Science, 1979(2): 40-46.)[11]赵桂范,连成才,郑天琪,等. 种植方式对大豆植株干物质积累及养分吸收影响的研究[J]. 大豆科学, 1995,14(3): 233-240.(ZHAO G F, LIAN C C, ZHENG T Q, et al. The effects of planting patterns ondry matter accumulation and nutrient content absorbability of soybean plant[J]. Soybean Science, 1995,14(3): 233-240.)[12]宋微微,杜吉到,郑殿峰,等. 大豆干物质积累、分配规律的研究进展[J]. 大豆科学, 2008, 27(6): 1062-1066.(SONG W W, DU J D, ZHENG D F, et al. Research progress on dry matter accumulation and distribution rules of soybean population[J]. Soybean Science, 2008, 27(6): 1062-1066.)[13]蒋利,雍太文,张群,等. 种植模式和施氮水平对大豆花荚脱落及产量的影响[J]. 大豆科学, 2015, 34(5): 843-849.(JIANG L, YONG T W, ZHANG Q, et al. Effect of different planting patterns and N application rates on abscission of flower and pod of soybean and yield[J]. Soybean Science, 2015, 34(5): 843-849.)[14]封亮,王淑彬,杨文亭,等. 红壤旱地玉米大豆间作模式对大豆农艺性状和产量的影响[J]. 大豆科学, 2020, 39(6): 882-890.(FENG L, WANG S B, YANG W T, et al. Effects of maize soybean intercropping patterns on soybean agronomic characters and yield in upland red soil[J]. Soybean Science, 2020, 39(6): 882-890.)[15]张君,王丕武,杨伟光,等. 大豆主要性状间的灰色关联度分析[J]. 沈阳农业大学学报, 2004(1): 1-3.(ZHANG J, WANG P W, YANG W G, et al. Analysis of grey correlative grade among main characters of soybean[J]. Journal of Shenyang Agricultural University, 2004(1): 1-3.)[16]孟凡钢,李羽,张伟,等. 不同生育时期干旱胁迫对大豆根系分布和农艺性状的影响[J]. 大豆科学, 2016, 35(6): 943-946. (Effect of drought-stress on soybean root distribution and agronomic traits at different growth stages[J]. Soybean Science, 2016, 35(6): 943-946.)[17]苏丽丽,李亚杰,徐文修,等. 耕作方式对土壤理化性状及夏大豆产量的影响分析[J]. 干旱地区农业研究, 2017, 35(3): 43-48, 58.(Effects of tillage methods on soil physical and chemical properties and yield of summer soybean[J]. Agricultural Research in the Arid Areas, 2017, 35(3): 43-48, 58.)[18]曹金锋,赵双进,卢思慧,等. 大豆不同群体叶面积指数及干物质积累与产量的关系[J]. 河北农业科学, 2009, 13(5): 1-3.(CAO J F, ZHAO S J, LU S H, et al. Studies on the relationship between yield and leaf area index and dry matter accumulation of soybean with different population[J]. Journal of Hebei Agricultural Sciences, 2009, 13(5): 1-3.)[19]常耀中,董丽华. 大豆高产规律及栽培技术研究[J]. 作物学报, 1982,8(1): 41-48.(CHANG Y Z, DONG L H. The principle of high-yielding soybean and its culture technique[J]. Acat Agronomica Sinica, 1983, 8(2): 41-48.)[20]陈传信,唐江华,王娜,等. 种植方式对北疆滴灌复播大豆植株生长及产量的影响[J]. 新疆农业大学学报, 2016, 39(6): 431-436.(CHEN C X, TANG J H, WANG N, et al. Effects of planting patterns on plant growth and yield of summer soybean in northern Xinjiang[J]. Journal of Xinjiang Agricultural University, 2016, 39(6): 431-436.)[21]尹晓娟,吴显峰,边辉. 大豆130 cm大垄高台密植试验研究[J]. 现代农业科技, 2010, 537(19): 56, 58.(YIN X J, WU X F, BIAN H. Study on the experiment of soybean cultivation in 130 cm wide-ridge high-platform[J]. Modern Agricultural Science and Technology, 2010, 537(19): 56, 58.)[22]黄甜. 大垄三行下不同类型大豆品种产量及生理特征研究[D]. 长春:吉林农业大学, 2020.(HUANG T. Study on yield and physiological characteristics of different types of soybean varities with three rows planting patterns[D]. Changchun: Jilin Agricultural University, 2020.)[23]李耀武. 大豆大垄高台密植增产机理初探[J]. 现代化农业, 2011, 382(5): 51-52.(LI Y W. Study on the mechanism of yield inctresing by dense planting in soybean wide-ridge and high platform planting[J]. Modernizing Agriculture, 2011, 382(5): 51-52.)[24]张伟,张惠君,王海英,等. 株行距和种植密度对高油大豆农艺性状及产量的影响[J]. 大豆科学, 2006,25(3): 283-287.(ZHANG W, ZHANG H J, WANG H Y, et al. Effects of spacings and planting densities on agronomic traits and yield in high-oil soybeans[J]. Soybean Science, 2006,25(3): 283-287.)[25]刘明,卜伟召,杨文钰,等. 山东间作大豆产量与主要农艺性状关联分析[J]. 中国油料作物学报, 2018, 40(3): 344-351. (LIU M, BU W Z, YANG W Y, et al. Correlation analysis of yield and agronomic traits of soybean for intercropping in Shandong[J]. Chinese Journal of Oil Crop Sciences, 2018, 40(3): 344-351.)

Memo

Memo:
-
Last Update: 2022-09-29