|Table of Contents|

Application Status and Prospect of Mutation Breeding Technology in Soybean Breeding and Gene Mining(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2022年02期
Page:
222-227
Research Field:
Publishing date:

Info

Title:
Application Status and Prospect of Mutation Breeding Technology in Soybean Breeding and Gene Mining
Author(s):
ZHANG Jin-bo1 XIA Shan-yong1 WANG Yong-bin1 TAN Wei-wei1 LI Zhao-bo1 XIAO Hui2 HAN Xin-chun3 LIU Zhao-jun1
(1.Institute of Biotechnology, Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Crop and Livestock Molecular Breeding of Heilongjiang Province, Harbin 150028, China; 2. Heilongjiang Academy of Agriculture Science, Harbin 150086, China; 3.Agriculture Bureau of Aihui District in Heihe, Heihe 164300, China)
Keywords:
soybean mutation breeding gene mining biotechnology
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2022.02.0222
Abstract:
Plant mutation breeding can create many excellent mutation resources. The mutants obtained by mutation can be used as new germplasm materials and provide rich resources for the cultivation of new soybean varieties. The mutant library also contributes to the study of soybean functional genome and provides genetic materials for the study of specific traits. On the one hand, this review introduced the application of mutation breeding technology in soybean growth characteristics, quality and resistance improvement breeding, and analyzed the research progress of using mutant library to mine soybean growth characteristics, quality traits and resistance related genes. On the other hand, this review introduced the application status of mutation technology combined with other biotechnology to explore target genes. Finally, this review looked forward to the application prospect of soybean mutation breeding technology in gene mining in the future, in order to use mutation breeding technology better to promote soybean genetic research and variety selection.

References:

[1]张丰收, 王青. 植物辐射诱变育种的研究进展[J]. 河南师范大学学报(自然科学版), 2020, 48(6): 2, 45-55. (ZHANG F S, WANG Q. Research progress of plant radiation mutation breeding[J]. Journal of Henan Normal University (Natural Science Edition), 2020, 48(6): 2, 45-55.)[2]张瑞成. 大豆化学诱变群体开发及其疫霉根腐病抗性初步分析[D].长沙: 湖南农业大学, 2017. (ZHANG R C. Development and pleliminary analysis of phytophthora sojae resistance of chemically mutagenized soybean populations[D].Changsha: Hunan Agricultural University, 2017.)[3]吕慧颖, 王道文, 葛毅强, 等. 大豆育种行业创新动态[J]. 植物遗传资源学报, 2018, 19(3): 464-467. (LYU H Y, WANG D W, GE Y Q, et al. Innovation of soybean breeding industry[J]. Journal of Plant Genetic Resources, 2018, 19(3): 464-467.)[4]赵琳, 宋亮, 詹生华, 等. 大豆育种进展与前景展望[J].大豆科技, 2014(3): 36-39. (ZHAO L, SONG L, ZHAN S H, et al. Progress and perspective on soybean breeding[J]. Soybean Science & Technology, 2014(3): 36-39.)[5]齐波, 汝玄玄, 贾召召, 等. 不同辐射强度对大豆M1代重要农艺性状的影响[J]. 中国农学通报, 2019, 35(12): 40-51. (QI B, RU X X, JIA Z Z, et al. Radiation intensities affect important agronomic characters of soybean M1 generation[J]. Chinese Agricultural Science Bulletin, 2019, 35(12): 40-45.)[6]郭宁, 郑佳佳, 胡博, 等. 菜豆品种黄金勾伽玛射线突变体库的建立及突变表型观察[J]. 土壤与作物, 2018, 7(2): 168-176. (GUO N, ZHENG J J, HU B, et al. Construction and phenotypic observation of a gamma radiation mutant library of common bean cultivar Golden Hook[J]. Soils and Crops, 2018, 7(2): 168-176.)[7]韩锁义. 大豆突变体库的构建及子叶折叠突变相关基因的初步研究[D]. 南京: 南京农业大学, 2008. (HAN S Y. Construction of mutant population in soybean (Glycine max L. Merr.) and study on curled-cotyledon mutation related genes[D]. Nanjing: Nanjing Agriculture University, 2008.) [8]吴春雷, 翟红, 吴红艳, 等. 大豆极早熟品种60Co γ射线突变体库的建立及突变表型鉴定[J]. 大豆科学, 2014, 33(6): 820-825. (WU C L, ZHAI H, WU H Y, et al. Identify of mutant phynotype and construction of 60Co γ mutant population for soybean extremely early maturing cultivar[J]. Soybean Science, 2014, 33(6): 820-825.)[9]ZHOU H K, TANG K Q, LI G, et al. A robust and rapid candidate gene mapping pipeline based on M2 populations[J/OL]. Frontiers in Plant Science[2021-05-06]. DOI: 10.3389/fpls.2021.681816.[10]张鑫, 苏彤, 顾玉阳, 等. 60Co-γ和EMS诱变“天隆一号”突变体库变异特征的初步分析[J]. 大豆科学, 2019, 38(4): 517-524. (ZHANG X, SU T, GU Y Y, et al. Preliminary variability analysis of mutant population for soybean‘Tianlong No1’induced by 60Co-γ and EMS[J]. Soybean Science, 2019, 38(4): 517-524.)[11]TONG X, ZHAO B, JIN W L, et al. Screening of leaf shape mutants induced by EMS and analysis of agronomic traits in azuki bean[J]. Agricultural Science & Technology, 2010(2): 54-57.[12]王亚琪, 简朴, 费云燕, 等. 大豆2个种皮不完整突变体的形态特点与遗传分析[J]. 核农学报, 2017, 31 (4): 621-626. (WANG Y Q, JIAN P, FEI Y Y, et al. Morphological characters and inheritance of incomplete seed coat in two induced soybean mutants[J]. Journal of Nuclear Agricultural Sciences, 2017, 31(4): 621-626.)[13]PARK S J, BUTIERY B R. Ethyl-methane sulphonate (EMS) induced nodulation mutants of common bean (Phaseolus vulgaris L.) lacking effective nodules[J]. Plant and Soil, 1992, 139: 295-298. [14]苍晶, 于龙凤, 王豫颖, 等. 大豆叶绿素缺失突变体HS 821的农艺性状和生化特性[J]. 核农学报, 2007, 21(1): 9-12. (CANG J, YU L F, WANG Y Y, et al. Agronomic and biochemical characters of chlorophyll deficient mutant HS 821 of soybean[J]. Journal of Nuclear Agricultural Sciences, 2007, 21(1): 9-12.)[15]郝再彬, 吴东岚. 矮秆大豆突变体的获得[J]. 核农学报, 2004,18(3): 204-206. (HAO Z B, WU D L. Obtaining of soybean dwarf mutant[J]. Journal of Nuclear Agricultural Sciences, 2004, 18(3): 204-206.) [16]唐均勇, 杨静, 洪慧龙, 等. 大豆茸毛突变体的鉴定及相关基因表达分析[J]. 植物遗传资源学报, 2020, 21(1): 121-129, 138. (TANG J Y, YANG J, HONG H L, et al. Identifification of soybean pubescence mutants and expression analysis of related genes[J]. Journal of Plant Genetic Resources, 2020, 21(1): 121-129, 138.) [17]HAJDUCH M, DEBRE F, HMOVB, et al. Two soybean mutants with increased total andsulphur amino acid content induced by sodiumazide[J]. Journal of Genetics & Breeding, 2000, 54(2): 83-87.[18]ARCHANA P, TAWARE S P, OAK M D, et al. Improvement of oil quality in soybean[Glycine max (L.) Merrill] by mutation breeding[J]. Journal of the American Oil Chemists Society, 2007(84): 1117-1124. [19]孙恺, 孙健, 舒小丽, 等. 高异黄酮大豆突变体的筛选及其特性初步研究[J]. 核农学报, 2016, 30(11): 2088-2095. (SUN K, SUN J, SHU X L, et al. Study on screening and characteristics of mutant high in soybean isoflavones[J]. Journal of Nuclear Agricultural Sciences, 2016, 30(11): 2088-2095.)[20]ALIKAMANOGLU S, YAYCILI O, SEN A. Effect of gamma radiation on growth factors, biochemical parameters, and accumulation of trace elements in soybean plants (Glycine max L. Merrill)[J]. Biological Trace Element Research, 2011, 141(1-3): 283-293. [21]AWADHESH K, VARUN K, LAL S K, et al. Influence of gamma rays and ethyl methanesulphonate (EMS) on the levels of phytic acid, raffinose family oligosaccharides and antioxidants in soybean seeds of different genotypes[J]. Journal of Plant Biochemistry Biotechnology, 2015, 24(2): 204-209.[22]GE F G, ZHENG N, ZHANG L P, et al. Chemical mutagenesis and soybean mutants potential for identification of novel genes conferring resistance to soybean cyst nematode[J]. Journal of Integrative Agriculture, 2018, 17(12): 2734-2744.[23]YULIASTI Y, REFLINUR R. Field Performance of five soybean mutants under drought stress conditions and molecular analysis using SSR markers[J]. Atom Indonesia, 2017, 43(2): 103.[24]张俐俐, 谷维, 雷勃钧, 等. 应用化学诱变法筛选抗草甘膦大豆突变株系[J]. 大豆科学, 2009, 28 (5): 938-940. (ZHANG L L, GU W, LEI B J, et al. Glyphosate resistant mutant strain of soybean filtered by chemomorphosis[J]. Soybean Science, 2009, 28(5): 938-940.) [25]WANG X , LIU C K , TU B J , et al. Effects of carbon ion beam irradiation on phenotypic variations and biochemical parameters in early generations of soybean plants[J]. Agriculture, 2021, 11(2): 98.[26]张之昊, 王俊, 刘章雄, 等. 基于BSA-Seq技术挖掘大豆中黄622的多小叶基因[J]. 作物学报, 2020, 46(12): 25-35. (ZHANG Z H, WANG J, LIU Z X, et al. Mining multi leaflet gene of yellow 622 in soybean based on BSA SEQ technology[J]. Journal of Crops, 2020, 46(12): 25-35.)[27]宋晓峰. 大豆叶形突变体的遗传和功能分析[D]. 济南: 山东师范大学, 2016. (SONG X F. The genetic and function analysis of soybean leaf shape mutant[D]. Jinan: Shandong Normal University, 2016.)[28]谢圣男, 王宏光, 杨振, 等. 大豆绥农14突变体库构建及株高性状分析[J]. 核农学报, 2018, 27(3): 307-313. (XIE S N, WANG H G, YANG Z, et al. Construction of Suinong 14 mutant library and analysis of soybean height mutant[J]. Journal of Nuclear Agricultural Sciences, 2018, 27(3): 307-313. )[29]冯星星. 大豆黄化突变体Gmcdm1与矮化突变体Gmdwf6的基因定位[D]. 北京: 中国科学院大学, 2015. (FENG X X. Gene mapping of soybean yellow mutant Gmcdm1 and dwarf mutant Gmdwf6[D]. Beijing: University of Chinese Academy of Sciences, 2015.)[30]李元龙. 大豆矮化短柄突变体baf6表型分析与基因定位[D]. 杨凌: 西北农林科技大学, 2017. (LI Y L. The phenotypic analysis and gene location of dwarf and short petiole soybean mutant baf6[D]. Yangling: Northwest A & F University, 2017.)[31]杨兵. 大豆开花突变体的光温特性鉴定及基因定位[D]. 广州:华南农业大学, 2018. (YANG B. Identification and mapping of early flowering soybean mutants derived from Huaxia 3[D]. Guangzhou: South China Agricultural University, 2018.)[32]张恒友. EMS诱变大豆突变体的鉴定与大豆开花调控基因GmSVP1和GmOFP1的克隆及功能分析[D]. 南京: 南京农业大学, 2011. (ZHANG H Y. Identification of soybean mutants mutated by EMS and cloning and functional analysis of flowering regulatory genes GmSVP1 and GmOFP1 in soybean (Glycine max L. Merrill)[D]. Nanjing: Nanjing Agricultural University, 2011.)[33]GILLMAN J D, TETLOW A, HAGELY K, et al.Identification of the molecular genetic basis of the low palmitic acid seed oil trait in soybean mutant line RG3 and association analysis of molecular markers with elevated seed stearic acid and reduced seed palmitic acid[J]. Molecular Breeding, 2014(34): 447-455. [34]SANDHU D, ALT J L, SCHERDER C W, et al. Enhanced oleic acid content in the soybean mutant M23 is associated with the deletion in the Fad2-1a gene encoding a fatty acid desaturase[J]. Journal of the American Oil Chemists Society, 2007, 84(3): 229-235.[35]DE VRIES B D, FEHR W R, WELKE G A, et al. Molecular analysis of mutant alleles for elevated palmitate concentration in soybean[J]. Crop Science, 2011, 51(6): 2554.[36]李雪华. 大豆突变体库的初步构建及突变类型的鉴定[D]. 南京: 南京农业大学, 2003. (LI X H. Preliminary construction of soybean mutant library and identification of mutation types[D]. Nanjing: Nanjing Agricultural University, 2003.)[37]于绍轩, 韩粉霞, 孙君明,等. 空间环境对大豆主要农艺性状及蛋白品质的诱变效应[J]. 核农学报, 2010, 24(3): 453-459. (YU S X, HAN F X, SUN J M, et al. Mutagenic effects of space environment on main agronomic characters and protein quality of soybean[J]. Journal of Nuclear Agricultural Sciences, 2010, 24(3): 453-459.)[38]TAKAHASHI K, BANBA H, KIKUCHI A, et al.An induced mutant line lacking the α-subunit of β-conglycinin in soybean [Glycine max (L.) Merrill][J]. Breeding Science, 1994, 44(1): 65-66.[39] WOO P C, KULKARNI K P, MINSU K, et al. Characterization of an EMS-induced soybean mutant with an increased content of Af saponin and a new component Ab-δ in the seed hypocotyl[J]. Euphytica, 2018, 214(9):163.[40]OLTMANS S E, FEHR W R, WELKE G A, et al. Inheritance of low-phytate phosphorus in soybean[J]. Crop Science, 2004, 44(2): 433-435.[41]袁凤杰, 任学良, 刘庆龙,等. 大豆籽粒高无机磷突变体的选育和特性研究[J]. 中国农业科学, 2005, 38(11): 2355-2359. (YUAN F J, REN X L, LIU Q L, et al. Breeding and characteristics of soybean grain high inorganic phosphorus mutant[J]. Chinese Agricultural Science, 2005, 38(11): 2355-2359.)[42]胡中慧. 大豆疫霉菌EMS突变体库的构建及microRNA生物合成相关基因DCL的识别[D]. 杨凌: 西北农林科技大学, 2010. (HU Z H. Construction of EMS mutant library of Phytophthora sojae and identification of miRNA biosynthesis related gene DCL[D].Yangling: Northwest A & F University, 2010.)[43]莫金钢. 大豆抗旱突变体耐旱机理研究[D]. 长春: 吉林农业大学, 2015. (MO J G. Study on drought tolerance mechanism of drought resistant mutants in soybean[D]. Changchun: Jilin Agricultural University, 2015.)[44]ESPINA M J, SABBIR A, ANGELINA B, et al. Development and phenotypic screening of an ethyl methane sulfonate mutant population in soybean[J]. Frontiers in Plant Science, 2018, 9: 394.[45]杨玛丽. 大豆理化诱变突变体库的构建及大豆单链特异性核酸酶基因的克隆[D]. 南京: 南京农业大学, 2007. (YANG M L. Construction of soybean physical and chemical mutation mutant library and cloning of soybean single strand specific nuclease gene[D]. Nanjing: Nanjing Agricultural University, 2011.)[46]DOBBELS A A. Fast neutron induced structural variants and seed composition in soybean lines[D]. Minnesota: University of Minnesota, 2016.[47]ZHANG F, SHEN Y T, SUN S, et al. Genome-wide expression analysis in a dwarf soybean mutant[J]. Characterization and Utilization, 2014, 12(S1): S70-S73.

Memo

Memo:
-
Last Update: 2022-05-18