|Table of Contents|

Regulating Effects of Fertilizing Models on Root Morphological Restructure and Yield Formation of Soybean in Loess Arid Region of China(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2021年06期
Page:
813-820
Research Field:
Publishing date:

Info

Title:
Regulating Effects of Fertilizing Models on Root Morphological Restructure and Yield Formation of Soybean in Loess Arid Region of China
Author(s):
WANG Xiao-lin ZHANG Pan-pan ZHANG Jing JI Xiao-ling ZHANG Xiong LIANG Ji-bao
(1.College of Life Sciences, Yulin University, Yulin 719000, China; 2.Agro-technical Extension and Service Center of Shenmu City, Yulin Shenmu 719300, China)
Keywords:
Loess arid region Dryland soybean cultivation Fertilizer models Root construction Biomass distribution
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2021.06.0813
Abstract:
In order to explore the relationship between root system construction, biomass distribution and yield formation of dry land soybean through the innovation of soybean fertilization mode in Loess Plateau, so as to realize high-quality, high-yield and high-efficiency cultivation of soybean in Loess Hilly and arid area,we took Fendou 78 as the research object, six treatments arranged as CK (bare land, N-30 kg?ha-1), N (film mulched, N-30 kg?ha-1), NPK (film mulched, N-60 kg?ha-1; P2O5-30 kg?ha-1; K2O-30 kg?ha-1), 2NPK (film mulched, N-90 kg?ha-1; P2O5-45 kg?ha-1; K2O-30 kg?ha-1), NPK-O (film mulched, N-90 kg?ha-1; P2O5-45 kg?ha-1; K2O-30 kg?ha-1; optimized organic soil-2.5 t?ha-1)and NPK-B (film mulched, N-60 kg?ha-1; P2O5-30 kg?ha-1; K2O-30 kg?ha-1; microbial fertilizer-10 kg?ha-1), with randomized block design and repeated 3 times. The relationship between soybean root-shoot development and yield formation was analyzed under different fertilizer strategies. The results showed that: (1) Optimized chemical fertilizer strategies improved soybean yield to a significant increase level by 27.4%, but along with the 2.1% yield loss due to chemical fertilizer application amount increase. Inversely, NPK-O and NPK-B significantly promoted the soybean yield by 53.3% and 11.1%. (2) The harvest index (HI) of soybean increased by 7.0%-22.2% and root to shoot rate (RSR) decreased by 3.3%-14.1% under NPK-O and NPK-B, which provided an efficient way for preventing the root superfluous growth, and then motivated the carbohydrate simulating to soybean seeds. (3) Root dry weight was astricted but root length and surface area improved by 17.7%-21.6% and 30.7%-36.7% respectively under NPK-O and NPK-B, compared with that in only chemical NPK application, indicated that root spatial arrangement was optimized, and then stimulated root function and established a foundation for the seeds yield and water use efficiency increase in dryland soybean. Finally, additional organic and microbial fertilizer input improved root water-nutrients uptaking and soil environmental adaptation in soybean, based on the root thinner and longer in the vertial soil layers, all the regulations in root and shoot biomass stimulation were beneficial to soybean yield increase stably, and to a favourable in agricultural ecolotical-economical benefits on the Loess Plateau.

References:

[1]魏文良, 刘路, 仇恒浩. 有机无机肥配施对我国主要粮食作物产量和氮肥利用效率的影响[J]. 植物营养与肥料学报, 2020, 26(8): 1384-1394. (Wei W L, Liu L, Qiu H H. Effects of different organic resources application combined with chemical fertilizer on yield and nitrogen use efficiency of main grain crops in China [J]. Journal of Plant Nutrition and Fertilizers,2020, 26(8): 1384-1394.) [2]王聪, 章建新. 滴水量对新大豆27号根系生长及产量的影响[J]. 干旱地区农业研究, 2015, 33(5): 169-174,185. (Wang C, Zhang J X. Effects of drip irrigation amount on root growth and yield of soybean 27[J]. Agricultural Research in the Arid Areas, 2015, 33(5): 169-174,185.)[3]Haigler C H,Ivanova Datcheva M,Hogan P S,et al. Carbon partitioning to cellulose synthesis[J]. Plant Molecular Biology,2001,47(1/2):29-51.)[4]李盛有, 孙旭刚, 王昌陵, 等. 不同嫁接方式下大豆对干旱胁迫的响应[J]. 中国油料作物学报, 2020, 42(4): 632-639. (Li S Y, Sun X G, Wang C L, et al. Soybean response to drought stress under different grafting patterns[J]. Chinese Journal of Oil Crop Sciences, 2020, 42(4): 632-639.)[5]高阳, 章建新, 楚光红, 等. 不同施氮量下春大豆根系生长与花荚形成的关系[J]. 吉林农业大学学报, 2018, 40(3): 258-263.(Gao Y, Zhang J X, Chu G H, et al. Relationship between spring soybean root growth and flower pod formation under different nitrogen application rates[J]. Journal of Jilin Agricultural University, 2018, 40(3): 258-263.)[6]Hinson K. Nodulation responses from nitrogen applied to soybean half root system[J]. Agronomy Journal, 1975, 67: 799-804.[7]Kuang R B, Liao H, Yan X L, et al. Phosphorus and nitrogen interactions in field grown soybean as related to genetic attributes of root morphological and nodular traits[J]. Journal of Integrative Plant Biology, 2005, 47(5): 224-228.[8]李蕊, 杨越, 李彦生, 等. 基于玉米-大豆轮作的不同施肥体系对大豆开花后根系形态及产量的影响[J]. 中国油料作物学报, 2018, 40(1): 64-73. (Li R, Yang Y, Li Y S, et al. Effects of different fertilization systems on characteristics of roots after flowering and yield in soybean based on corn-soybean rotation[J]. Chinese Journal of Oil Crop Sciences, 2018, 40(1): 64-73.)[9]朱宝国, 于忠和, 王囡囡, 等. 有机肥和化肥不同比例配施对大豆产量和品质的影响[J]. 大豆科学, 2010, 29(1): 97-100. (Zhu B G, Yu Z H, Wang N N, et al. Effect of different proportion combined application of organic and chemical fertilizer on soybean yield and quality[J]. Soybean Science, 2010, 29(1): 97-100.)[10]杨雪丽, 吴吉英子, 刘凡, 等. 大豆品种对间作玉米苗期根系生长及抗氧化特性的影响[J]. 四川农业大学学报, 2021, 39(1): 11-18.(Yang X L, Wu J Y Z, Liu F, et al. Effects of different soybean varieties on root growth and physiological characteristics of intercropping maize[J]. Journal of Sichuan Agricultural University, 2021, 39(1): 11-18.)[11]倪丽, 章建新, 金加伟, 等. 氮肥施用对高产大豆根系、干物质积累及产量的影响[J]. 新疆农业大学学报, 2004(2): 36-39.(Ni L, Zhang J X, Jin J W, et al. Effect of nitrogen on root system dry matter accumulation and yield of high yield soybean[J]. Journal of Xinjiang Agricultural University, 2004(2): 36-39.)[12]杨光, 张惠君, 宋书宏, 等. 超高产大豆根系相关性状的比较研究[J]. 大豆科学, 2013, 32(2):176-181.(Yang G, Zhang H J, Song S H, et al. Comparison on some root related traits of super-high-yielding soybean[J]. Soybean Science, 2013, 32(2):176-181.)[13]李盛有, 孙旭刚, 王昌陵, 等. 基于嫁接技术评价不同耐旱型大豆根系对叶片光合参数的影响[J]. 大豆科学, 2020, 39(5): 751-757.(Li S Y, Sun X G, Wang C L, et al. Effects of different drought tolerant soybean roots on photosynthesis of leaves based on grafting technology[J]. Soybean Science, 2020, 39(5): 751-757.)[14]杨秀红, 吴宗璞, 张国栋. 大豆品种根系性状与地上部性状的相关性研究[J]. 作物学报, 2002,28(1): 72-75.(Yang X H, Wu Z P, Zhang G D. Correlations between characteristics of roots and those of aerial parts of soybean varieties[J]. Acta Agronomica Sinica,2002,28(1): 72-75.)[15]龚屾. 不同大豆品种根系生长能力及时空分布特征[D]. 大庆:黑龙江八一农垦大学, 2016.(Gong S. The spatial distribution characters and growing ability in different varieties of soybean[J]. Daqing: Heilongjiang Bayi Agricultural University, 2016.)[16]Mehetre S S, Shinde R B, Borle U M, et al. Path analysis studies of partitioning in root growth and yield characters in soybean[J]. Crop Research, 1997, 13: 415-422.[17]Lynch J. Root architecture and plant productivity[J]. Plant Phys-iology, 1995, 109: 7-13.[18]刘秀红, 杜天庆, 苗果园. 不同施肥处理对大豆植株根系及产量的影响[J]. 山西农业大学学报(自然科学版), 2008(1): 7-10.(Liu X H, Du T Q, Miao G Y. Effects of different fertilizer treatments on the root system and the yield of soybean[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2008(1): 7-10.)[19]王敏, 杨万明, 杜维俊. 苗期大豆根系及地上部性状与耐旱性的关系[J]. 大豆科学, 2012, 31(3): 399-405.(Wang M, Yang W M, Du W J. Root and aboveground characteristics at seedling and their relationship with drought tolerance in soybean[J]. Soybean Science, 2012, 31(3): 399-405.)[20]孙海波. 大豆根系及其与地上部分关系的研究[D]. 哈尔滨:东北农业大学, 2006. (Sun H B. study on soybean root systems along with its relations with upper ground characteristics[D]. Harbin: Northeast Agriculture University, 2006.)[21]王诗雅, 郑殿峰, 冯乃杰, 等. 植物生长调节剂S3307对苗期淹水胁迫下大豆生理特性和显微结构的影响[J]. 作物学报, 2021,47(10):1-14.(Wang S Y, Zheng D F, Feng N J, et al. Effects of uniconazole on physiological characteristics and microstructure under water logging stress at seedling stage in soybean[J]. Acta Agronomica Sinica, 2021,47(10):1-14.[22]安菁, 刘欢语, 郑艳, 等. 土壤微塑料残留对大豆幼苗生长及生理生化特征的影响[J]. 四川农业大学学报, 2021, 39(1): 41-46,113.(An J, Liu H Y, Zheng Y, et al. Effects of soil micro-plastics residue on soybean seedlings growth and the physiological and biochemical characteristics[J]. Journal of Sichuan Agricultural University, 2021, 39(1): 41-46,113.) [23]朱倩, 姚兴东, 单玉姿, 等. 生物炭对R2期大豆根系生长和氮磷吸收利用的影响[J]. 沈阳农业大学学报, 2019, 50(4): 385-391.(Zhu Q, Yao X D, Shan Y Z, et al. Effects of biochar on root growth at R2 stage, and nitrogen, phosphorus uptake and utilization of soybean[J]. Journal of Shenyang Agricultural University, 2019, 50(4): 385-391.)[24]韩新华, 马淑梅, 付雪, 等. 东北春大豆抗旱品种根系特征的研究[J]. 中国农学通报, 2019, 35(12): 34-39.(Han X H, Ma S M, Fu X, et al. Root characteristics of drought-resistant cultivars of spring soybeans in northeast China[J]. Chinese Agricultural Science Bulletin, 2019, 35(12): 34-39.)[25]孟凡钢, 李羽, 张伟, 等. 不同生育时期干旱胁迫对大豆根系分布和农艺性状的影响[J]. 大豆科学, 2016, 35(6): 943-946.(Meng F G, Li Y, Zhang W, et al. Effect of drought-stress on soybean root distribution and agronomic traits at different growth stages[J]. Soybean Science, 2016, 35(6): 943-946.)[26]王维, 吴景贵, 李蕴慧, 等. 有机物料对不同作物根系土壤腐殖质组成和结构的影响[J]. 水土保持学报, 2017, 31(2): 215-220.(Wang W, Wu J G, Li Y H, et al. Effects of organic materials on he composition and structure of humic substance in the rhizosphere soil of different crops[J]. Journal of Soil and Water Conservation, 2017, 31(2): 215-220.)[27]闫春娟, 宋书宏, 王文斌, 等. 不同降雨条件对不同耐旱型大豆根系的影响[J]. 大豆科学, 2018, 37(2): 209-214.(Yan C J, Song S H, Wang W B, et al. Effect of different rainfall conditions on root system of different drought resistance soybean[J]. Soybean Science, 2018, 37(2): 209-214.)[28]殷大伟, 王佳博,金梁, 等. 生物炭对白浆土水分渗透性能、养分含量及大豆产量的影响[J]. 大豆科学, 2019, 38(1): 72-76.(Yin D W, Wang J B, Jin L, et al. Effect of biochar on soil water permeability,nutrient content of albic soil and yield of soybean[J]. Soybean Science, 2019, 38(1): 72-76.)[29]高阳, 楚光红, 傅积海, 等. 施氮量对滴灌高产春大豆根系生长及产量的影响[J]. 干旱地区农业研究, 2018, 36(4): 46-52.(Gao Y, Chu G H, Fu J H, et al. Effect of nitrogen fertilizer amount on root growth and yield of spring soybean in drip irrigation[J]. Agricultural Research in the Arid Areas, 2018, 36(4): 46-52.)[30]周行, 龚屾, 郑殿峰, 等. 黑龙江省不同大豆品种根系分布特征及与产量的关系[J]. 大豆科学, 2020, 39(1): 52-61.(Zhou X, Gong S, Zheng D F, et al. Root distribution characteristics of different soybean varieties in Heilongjiang Province and the relationship with yield[J]. Soybean Science, 2020, 39(1): 52-61.)[31]赵占营, 楚光红, 李思忠, 等. 栽培密度对高产大豆根系生长及花荚形成的影响[J]. 干旱地区农业研究, 2019, 37(5): 62-69.(Zhao Z Y, Chu G H, Li S Z, et al. Effects of different densities on root growth and pod formation of high-yield soybean[J]. Agricultural Research in the Arid Areas, 2019, 37(5): 62-69.)[32]匡恩俊, 李梓瑄, 迟凤琴, 等. 耕地方式与有机肥配施对大豆产量及土壤养分特征的影响[J]. 大豆科学, 2020, 39(1): 108-115.(Kuang E J, Li Z X, Chi F Q, et al. Effect of different plough and organic fertilizer on characteristics of soybean yield and soil nutrients[J]. Soybean Science, 2020, 39(1): 108-115.)[33]李婧, 迟凤莲, 魏丹, 等. 不同有机物料还田对黑土活性有机碳组分含量的影响[J]. 大豆科学,2018, 35(6): 975-980.(Li J, Chi F L, Wei D, et al. Effects of different organic materials returning to field on the content of active organic carbon in black soil[J]. Soybean Science, 2018, 35(6): 975-980.)[34]王士超. 典型黑土区有机物料提升土壤碳氮固持的协同效应机制[D]. 北京:中国农业科学院, 2019.(Wang S C. Synergistic effect and mechanisms of improving soil carbon and nitrogen sequestration with organic materials on black soil region of northeast China[D]. Beijing: Chinese Academy of Agriculture Sciences, 2019.)

Memo

Memo:
-
Last Update: 2021-12-30