|Table of Contents|

Genetic Stability Analysis of Target Traits in Transgenic Herbicide Tolerant Soybean ZH10-6(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2021年06期
Page:
767-773
Research Field:
Publishing date:

Info

Title:
Genetic Stability Analysis of Target Traits in Transgenic Herbicide Tolerant Soybean ZH10-6
Author(s):
WANG Cheng WANG Ya-si LI Na3 YAO Jun-jin XU Shi-yong ZHAO Xin LAN Qing-kuo WANG Yong
(1.Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; 2.College of Plant Protection, Heibei Agricultural University, Baoding 071001, China; 3.College of Horticulture and Landscape Architectures,Tianjin Agricultural University, Tianjin 300392, China)
Keywords:
Soybean Transgenic Herbicide tolerance Target traits Genetic stability
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2021.06.0767
Abstract:
In order to evaluate the genetic stability of the target traits of 30% glyphosate water (Monsanto) tolerance in transgenic herbicide tolerant soybean at different generations, we used transgenic soybean ZH10-6 with G2-EPSPS and GAT genes as materials to detect the target protein content in different generations (T2-T4), growth stages and organs of transgenic soybean by enzyme-linked immunosorbent assay (ELISA).At the same time, we investigated the tolerance of three generations of transgenic soybean to the target herbicide by spraying different doses of glyphosate. The results showed that, the target proteins G2-EPSPS and GAT could be detected stably in all transgenic materials, and the expression levels were basically the same among different generations. The expression of target protein was the highest in leaves and the lowest in seeds. Under the condition of spraying the same dose of glyphosate, the plant height, seedling rate and damage rate of transgenic soybean ZH10-6 in three generations were significantly different to those of non-transgenic control soybean (P<0.05), and showed strong tolerance to 4 times medium dose of target herbicide. The results showed that ZH10-6 could be stably inherited in the offspring, which provided data support for the biosafety evaluation of transgenic herbicide tolerant soybean.

References:

[1]赵小龙, 王溶花, 姚金成, 等. 我国大豆进口贸易现状及问题分析[J]. 粮食科技与经济, 2020, 45(12): 21-22, 61. (Zhao X L, Wang R H, Yao J C, et al. Current situation and problems of soybean import trade in China [J]. Grain Science and Technology and Economy, 2020, 45(12): 21-22, 61.)[2]吴曰程, 王玉斌. 中国转基因大豆进口及其影响分析[J]. 大豆科学, 2019, 38(4): 635-643. (Wu Y C, Wang Y B. The effect of China′s GM soybean imports [J]. Soybean Science, 2019, 38(4): 635-643.)[3]Arujanan. ISAAA in 2019 accomplishment report[R]. Nairobi: ISAAA, 2019: 1-37.[4]杨树果. 全球转基因作物发展演变与趋势[J]. 中国农业大学学报,2020,25(9):13-26. (Yang S G. Evolution and developing trend of global biotech/GM crops[J]. Journal of China Agriculture University, 2020, 25(9): 13-26.)[5]于滔, 曹士亮, 张建国, 等. 全球转基因作物商业化种植概况(1996—2018年)[J]. 中国种业, 2020(1):13-16. (Yu T, Jia S L, Zhang J G, et al. Overview of global commercial planting of genetically modified crops (1996-2018) [J].China Seed Industry, 2020(1):13-16.)[6]Clive J. Global status of commercialized biotech/GM crops 2018: Biotech crop continue to help meet the challenges of increased population and climate change [M]. New York: International Service for the Acquisition of Agri-Biotech Applications, 2018.[7]王少峡, 王振英, 彭永康. DREB 转录因子及其在植物抗逆中的应用[J]. 植物生理学通讯, 2004, 40(1): 7-13. (Wang S X, Wang Z Y, Peng Y K. Dehydration Responsive Element Binding (DREB) transcription activator and its function in plant tolerance to environmental stresses[J]. Plant Physiology Journal, 2004, 40(1): 7-13.)[8]李冬梅, 李悦, 李永光, 等. 转TaDREB3a基因大豆材料抗旱性鉴定[J]. 东北农业大学学报, 2019, 50(10): 12-22. (Li D M, Li Y, Li Y G, et al. Identification of drought resistance of transgenic TaDREB3a soybean materials [J]. Journal of Northeast Agricultural University, 2019, 50(10): 12-22.)[9]岳同卿, 郎志宏, 王延锋, 等. 转Bt cry1Ah基因抗虫玉米的获得及其遗传稳定性分析[J]. 农业生物技术学报, 2010, 18(4): 638-644. (Yue T Q, Lang Z H, Wang Y F, et al. Acquirement of the transgenic maize harboring Bt cry1Ah gene and analysis of its inheritable stability[J]. Journal of Agricultural Biotechnology, 2010, 18(4): 638-644.)[10]郭兵福, 郭勇, 洪慧龙, 等. 共表达G2-EPSPS和GAT基因增强转基因大豆植株对草甘膦耐受性[J]. 大豆科技,2020,37(2): 37-38. (Guo B F,Guo Y,Liang H L,et al. Co-expression of G2EPSPS and GAT genes enhanced glyphosate tolerance in transg-enic soybean plants[J]. Soybean Science & Technology,2020,37(2): 37-38.)[11]邢珍娟, 李飞武, 刘娜, 等. 转EPSPS基因大豆植株中蛋白的表达[J]. 大豆科学, 2009, 28(6): 981-984, 989. (Xing Z J, Li F W, Liu N, et al. Expression of CP4 EPSPS protein of genetically modified roundup ready soybean [J]. Soybean Science, 2009, 28(6): 981-984, 989.)[12]于惠林, 杨鑫浩, 肖娅风, 等. EPSPS蛋白在转基因耐草甘膦大豆植株中的表达量测定[C]. 长沙: 第十一届全国杂草科学大会论文摘要集, 2013. (Yu H L, Yang X H, Xiao Y F, et al. Expression of EPSPS protein in transgenic glyphosate tolerant soybean plants[C]. Changsha: Abstracts of proceedings of the Eleventh National Weed Science Conference, 2013.)[13]翁嘉慧, 楼亿圆, 徐京, 等. 转AM79-EPSPS基因抗草甘膦大豆遗传稳定性分析[J]. 农业生物技术学报, 2019, 27(9): 1550-1559. (Weng J H, Lou Y Y, Xu J, et al. Genetic stability analysis of transgenic AM79-EPSPS glyphosate-resistant soybean(Glycine max)[J]. Journal of Agricultural Biotechnology, 2019, 27(9): 1550-1559.)[14]王永慧. 温湿度逆境、棉铃大小和生长物质对Bt棉Bt蛋白表达量的影响及其生理机制[D]. 扬州: 扬州大学, 2010. (Wang Y H. Effects of combination of temperature and humidity, boll size,growth substances on Bt protein expression and metab-olism for Bt cotton[D]. Yangzhou: Yangzhou University, 2010.)[15]张桂玲, 温四民. 盐胁迫对转Bt基因棉苗期Bt蛋白表达量和氮代谢的影响[J]. 西北农业学报, 2011, 20(6): 106-109. (Zhang G L,Wen S M. Effects of salt stress on Bt protein content and nitrogen metabolism of transgenic Bt cotton[J]. Acta Agri-culturae Boreali-occidentalis Sinica, 2011, 20(6): 106-109.)[16]陈源, 韩勇, 花明明, 等. 低温和湿度胁迫对盛铃期Bt棉叶片Bt蛋白表达量的影响[J]. 棉花学报,2014, 26(4): 29. (Chen Y, Han Y, Hua M M, et al. Effect of stresses of low temperature and different relative humidity on the Bt protein content in leaves at the bolling stage in Bt cotton[J]. Cotton Science, 2014, 26(4): 29.)[17]黄鹞, 郭汝清, 刘标. 杂草环境下转EPSPS基因大豆NZL06-698的生态适应性研究[J]. 大豆科学, 2017, 36(6): 866-871. (Huang Y, Guo R Q, Liu B. Ecological adaptability of glyphosate-resistant transgenic soybean NZL06-698 in weed environment[J]. Soybean Science, 2017, 36(6): 866-871.)[18]邹俊杰, 徐妙云, 张兰, 等. 转基因复合抗虫耐除草剂玉米BFL4-1的分子特征及功能评价[J/OL]. 中国农业科技导报: 1-7[2021-09-27]. http:doi.org/10.13304/j.nykjdb.2020.0111. (Zou J J, Xu M Y, Zhang L, et al. Molecular characteristics and functional evaluation of transgenic maize BFL4-1 with stacked insect and herbicide resistance traits[J/OL]. Journal of Agricultural Science and Technology: 1-7[2021-09-27]. http:doi.org/10.13304/j.nykjdb.2020.0111.)[19]杨秋姣, 孙晓丽, 孙明哲, 等. 转cry6Aa2m基因大豆遗传稳定性分析及农艺性状调查[J]. 大豆科学, 2014, 33(5): 629-633. (Yang Q J, Sun X L, Sun M Z, et al. Genetic stability analysis and agronomic traits investigation of cry6Aa2m transgenic Glycine max[J]. Soybean Science, 2014, 33(5): 629-633.)

Memo

Memo:
-
Last Update: 2021-12-30