|Table of Contents|

The Heterodera glycines Effector Hg16B09 Suppresses Plant Innate Immunity(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2021年06期
Page:
759-766
Research Field:
Publishing date:

Info

Title:
The Heterodera glycines Effector Hg16B09 Suppresses Plant Innate Immunity
Author(s):
WANG Yu YOU Jia CHEN Ao-shuang XU Li-jian HU Yan-feng
(1.College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; 2. Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; 3. Institute of Pratacultural Science, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China)
Keywords:
Soybean Soybean cyst nematode Effector Hg16B09 PAMP-triggered immunity(PTI) Effectors-triggered immunity (ETI) Defense-related genes
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2021.06.0759
Abstract:
To test whether the effector Hg16B09, identified from the soybean cyst nematode (SCN), Heterodera glycines, plays an important role in manipulating host defense responses, we used Nicotiana benthamiana to transiently express recombinant Hg16B09 plasmid, and different immune elicitors which can trigger defense responses (PTI and ETI). Then, the effects of Hg16B09 on PTI and ETI suppression were investigated by determining the reactive oxygen species (ROS) burst, hypersensitive response (HR), and the expression of defense marker genes. Transient expression of Hg16B09 in  Nicotiana benthamiana leaves significantly suppressed the production of hydrogen peroxide and the expression levels of defense-related genes (PTI5, WRKY22-A, WRKY22-B and ACRE31) triggered by flg22. The transcript levels of PTI5, WRKY22-A,WRKY22-B and ACRE31 significantly decreased 45%, 61%, 67% and 61% in N. benthamiana leaves expressing Hg16B09 when compared to that in the control leaves, respectively. Hg16B09 could also inhibit HR induced by Pseudomonas syringae DC 3000 and an avirulent effector Rbp-1, which resulted in the smaller areas of cell death on the N. benthamiana leaves. qRT-PCR analysis further showed that Hg16B09 caused significant down-regulation of defense genes in salicylic acid signaling during Pst DC3000 infection, and the expression levels of PR1a, PR2, WRKY51 and PI1 induced by Pst DC3000 decreased approximately 67%, 71%, 48% and 81% in the leaves expressing Hg16B09 compared to the control leaves, respectively. In conclusion, our data indicated that Hg16B09 acts as PTI and ETI suppressors to perform its toxic biological functions during SCN-host interactions.

References:

[1]Koenning S R, Wrather J A. Suppression of soybean yield poten-tial in the continental United States by plant diseases from 2006 to 2009[EB/OL]. Plant Health Progress, 2010, 11(1).DOI:10.1094/PHP-2010-1122-01-RS.[2]段玉玺. 植物线虫学[M]. 北京: 科学出版社, 2011. (Duan Y X. Plant nematology [M]. Beijing: Science Press, 2011.)[3]Wang D,Duan Y X, Wang Y Y, et al. First report of soybean cyst nematode, Heterodera glycines, on soybean from Guangxi, Guizhou, and Jiangxi Provinces, China[J]. Plant Disease, 2015, 99(6): 893.[4]Peng D L, Peng H, Wu D Q, et al. First report of soybean cyst nematode (Heterodera glycines) on soybean from Gansu and Ningxia China[J]. Plant Disease, 2015, 100(1): 229. [5]刘世名, 彭德良. 大豆的孢囊线虫抗性研究新进展[J]. 中国科学:生命科学, 2016, 46(5): 535-547. (Liu S M, Peng D L. Recent progresses on soybean resistance to soybean cyst nematode[J]. Scientia Sinica Vitae, 2016, 46(5): 535-547.)[6]Niblack T L, Colgrove K B, Colgrove A C. Soybean cyst nematode in Illinois from 1990 to 2006: Shift in virulence phenotype of field populations[J]. Journal of Nematology, 2006, 38(2): 285.[7]Acharya K, Tande C, Byamukama E. Determination of Heterodera glycines virulence phenotypes occurring in South Dakot[J]. Plant Disease, 2016, 100(11): 281-286. [8]Jones J,Dangl J. The plant immune system[J]. Nature, 2006, 444(7117): 323-329.[9]Manosalva P, Manohar M, Von Reuss S H, et al. Conserved nematode signaling molecules elicit plant defenses and pathogen resistance[J]. Nature Communications, 2015, 6: 7795.[10]Mendy B, Ombe M W W, Radakovic Z S, et al. Arabidopsis leucine-rich repeat receptor-like kinase NILR1 is required for induction of innate immunity to parasitic nematodes[J]. PLoS Pathogens, 2017, 13(4): e1006284.[11]Klessig D F, Manohar M, Baby S, et al. Nematode ascaroside enhances resistance in a broad spectrum of plant-pathogen systems[J]. Journal of Phytopathology, 2019,167: 265-272.[12]赵洁, 彭德良, 刘世名. 植物寄生线虫效应子研究进展[J]. 植物保护学报, 2020, 47(2): 245-254. (Zhao J, Peng D L, Liu S M. Progresses in the researches on the effectors of plant parasitic nematodes[J]. Journal of Plant Protection, 2020, 47(2): 245-254.)[13]Ali M A,Azeem F, Li H, et al. Smart parasitic nematodes use multifaceted strategies to parasitize plants[J]. Frontiers in Plant Science, 2017, 8: 1699.[14]姚珂, 郑经武, 黄文坤, 等. 植物寄生线虫效应蛋白调控寄主防卫反应分子机制研究进展[J]. 植物病理学报, 2020, 50(5): 517-530. (Yao K, Zheng J W, Huang W K, et al. Research progress on the regulation of host defense by plant parasitic nematode effectors[J]. Acta Phytopathologica Sinica, 2020, 50(5): 517-530.)[15]Riggs R D.Ultrastructural changes in Peking soybeans infected with Heterodera glycines[J]. Phytopathology, 1973, 63(1): 76-84.[16]Kandoth P K, Ithal N, Recknor J, et al. The soybean Rhg1 locus for resistance to the soybean cyst nematode Heterodera glycines regulates the expression of a large number of stress- and defense-related genes in degenerating feeding cells[J]. Plant Physiology, 2011, 155(4): 1960-1975.[17]Gao B L, Allen R, Maier T, et al. The parasitome of the phyto-nematode Heterodera glycines[J]. Molecular Plant-Microbe Interactions, 2003, 16(8): 720-726.[18]Noon J B,Hewezi T, Maier T R, et al. Eighteen new candidate effectors of the phytonematode Heterodera glycines produced specifically in the secretory esophageal gland cells during parasitism[J]. Phytopathology, 2015, 105(10): 1362-1372.[19]Gardner M,Dhroso A, Johnson N, et al. Novel global effector mining from the transcriptome of early life stages of the soybean cyst nematode Heterodera glycines[J]. Scientific Reports, 2018, 8: 2505.[20]Masonbrink R, Maier T R, Muppirala U, et al. The genome of the soybean cyst nematode (Heterodera glycines) reveals complex patterns of duplications involved in the evolution of parasitism genes[J]. BioMed Central, 2019, 20(1): 119.[21]Lambert K N,Bekal S, Domier L L,et al. Selection of Heterodera glycines chorismate mutase-1 alleles on nematode-resistant soybean[J]. Molecular Plant-Microbe Interactions, 2005, 18(6): 593-601.[22]Bekal S, Niblack T L, Lambert K N. A chorismate mutase from the soybean cyst nematode Heterodera glycines shows poly-morphisms that correlate with virulence[J]. Molecular Plant-Microbe Interactions, 2003, 16(5): 439-446. [23]Bekal S, Domier L L, Gonfa B, et al. A SNARE-like protein and biotin are implicated in soybean cyst nematode virulence[J]. PLoS One, 2015, 10(12): e0145601.[24]Ste-Croix D T, St-Marseille A F G, Lord E, et al. Genomic profiling of virulence in the soybean cyst nematode using single-nematode sequencing[J]. Phytopathology, 2020, 111(1): 137-148.[25]Hu Y, You J, Li C, et al. The Heterodera glycines effector Hg16B09 is required for nematode parasitism and suppresses plant defense response[J]. Plant Science, 2019, 289: 110271.[26]Yang S S, Dai Y R, Chen Y P,et al. A novel G16B09-like effector from Heterodera avenae suppresses plant defenses and promotes parasitism[J]. Frontiers in Plant Science, 2019, 10:66.[27]Chen S, Chronis D, Wang X. The novel GrCEP12 peptide from the plant-parasitic nematode Globodera rostochiensis suppresses flg22-mediated PTI[J]. Plant Signal Behavior, 2013, 8(9): e25359.[28]Wei C,Kvitko B H, Shimizu R, et al. A Pseudomonas syringae pv. tomato DC3000 mutant lacking the type III effector HopQ1-1 is able to cause disease in the model plant Nicotiana benthamiana[J]. Plant Journal, 2010, 51(1): 32-46.[29]Sacco M A,Koropacka K, Grenier E, et al. The cyst nematode SPRYSEC protein RBP-1 elicits Gpa2-and RanGAP2-dependent plant cell death[J]. PLoS Pathogens, 2009, 5(8): e1371.[30]Holsters M, de Waele D, Depicker A, et al. Transfection and transformation of Agrobacterium tumefaciens[J]. Molecular & General Genetics, 1978, 163(2): 181-187.[31]Noon J B, Qi M, Sill D N, et al. Aplasmodium-like virulence effector of the soybean cyst nematode suppresses plant innate immunity[J]. New Phytologist, 2016, 212: 444-460.[32]Yeam I, Nguyen H P, Martin G B. Phosphorylation of the Pseudomonas syringae effector AvrPto is required for FLS2/BAK1-independent virulence activity and recognition by tobacco[J]. Plant Journal for Cell & Molecular Biology, 2010, 61(1):16-24.[33]Veljovic-Jovanovic S, Noctor G, Foyer C H. Are leaf hydrogen peroxide concentrations commonly overestimated? The potential influence of artefactual interference by tissue phenolics and ascorbate[J]. Plant Physiology & Biochemistry, 2002, 40(6-8): 501-507.[34]Tukey J W. Some selected quick and easy methods of statistical analysis[J]. Transactions of the New York Academy of Sciences, 1954, 16(2): 88-97.[35]Mitchum M G, Hussey R S, Baum T J, et al. Nematode effector proteins: An emerging paradigm of parasitism[J]. New Phytologist, 2013, 199(4): 879-894.[36]Chen C L, Liu S S, Liu Q, et al. An ANNEXIN-like protein from the cereal cyst nematode Heterodera avenae suppresses plant defense[J]. Plos One, 2015, 10(4): e0122256.[37]Lozano-Torres J L,Wilbers Ruud H P, Warmerdam S, et al. Apoplastic venom allergen-like proteins of cyst nematodes modulate the activation of basal plant innate immunity by cell surface receptors[J]. PLoS Pathogens, 2014, 10(12): e1004569.[38]Jaouannet M, Perfus-Barbeoch L, Deleury E, et al. A root-knot nematode-secreted protein is injected into giant cells and targeted to the nuclei[J]. New Phytologist, 2012,194(4): 924-931.[39]Lin B R,Zhuo K, Chen S, et al. A novel nematode effector suppresses plant immunity by activating host reactive oxygen species-scavenging system[J]. New Phytologist, 2016, 209:1159-1173.[40]Zhuo K, Naalden D, Nowak S, et al. A Meloidogyne graminicola C-type lectin, Mg01965, is secreted into the host apoplast to suppress plant defence and promote parasitism[J]. Molecular Plant Pathology, 2019, 20(3):346-355.[41]Wang J Y,Yeckel G, Kandoth P K, et al. Targeted suppression of soybean BAG6-induced cell death in yeast by soybean cyst nematode effectors[J]. Molecular Plant Pathology, 2020, 21(9): 1227-1239.[42]Pogorelko G, Wang J Y, Juvale P S, et al. Screening soybean cyst nematode effectors for their ability to suppress plant immunity[J]. Molecular Plant Pathology, 2020, 21(9): 1240-1247.[43]Adachi H, Nakano T,Miyagawa N, et al. WRKY transcription factors phosphorylated by MAPK regulate a plant immune NADPH oxidase in Nicotiana benthamiana[J]. The Plant Cell, 2015, 27(9): 2645-2663.[44]Adachi H,Ishihama N, Nakano T, et al. Nicotiana benthamiana MAPK-WRKY pathway confers resistance to a necrotrophic pathogen Botrytis cinerea[J]. Plant Signaling & Behavior, 2016, 11(6): e1183085.[45]Li S, Han X, Yang L, et al. Mitogen-activated protein kinases and calcium-dependent protein kinases are involved in wounding-induced ethylene biosynthesis in Arabidopsis thaliana[J]. Plant Cell and Environment, 2017, 41(1): 134-147.[46]Kud J, Wang W J, Gross R, et al. The potato cyst nematode effector RHA1B is a ubiquitin ligase and uses two distinct mechanisms to suppress plant immune signaling[J]. PLoS Pathogens, 2019, 15(4): e1007720.[47]Naalden D, Verbeek R, Gheysen G. Nicotiana benthamiana as model plant for Meloidogyne graminicola infection[J]. Nematology, 2018, 20 (5): 491-499.[48]Guo X, Chronis D, De La Torre C M, et al. Enhanced resistance to soybean cyst nematode Heterodera glycines in transgenic soybean by silencing putative CLE receptors[J]. Plant Biotechnology Journal, 2015, 13(6): 801-810.

Memo

Memo:
-
Last Update: 2021-12-30