|Table of Contents|

Bioinformatics Analysis and Gene Editing Target Design of BBX32 Gene in Soybean(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2021年05期
Page:
602-611
Research Field:
Publishing date:

Info

Title:
Bioinformatics Analysis and Gene Editing Target Design of BBX32 Gene in Soybean
Author(s):
LI Tai1DU Hao1LI Yong-li1CHENG Yu-han2NAN Hai-yang1HOU Zhi-hong1CHENG Qun1LIU Bao-hui1
(1.School of Life Sciences,Guangzhou University,Guangzhou 510006,China; 2.Beijing Zhongnong Futong Horticulture Co., Ltd.,Beijng 100083,China)
Keywords:
SoybeanBBX32 genesBioinformatics analysisCRISPR/Cas9 technologyEdit target
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2021.05.0602
Abstract:
BBX32 genes belong zinc finger transcription factor,which are widely involved in plant growth and development.However,the biological function of BBX32 genes had not been resolved in soybean.To investigate the molecular mechanism of BBX32 genes in soybean,homology alignment analysis was performed.The result showed that the two homologous of Arabidopsis BBX32 were found in soybean,and named GmBBX32a and GmBBX32b.The expression levels GmBBX32a and GmBBX32b in different tissues of soybean were analyzed by using the RNA-seq database.The result showed that the expression level of GmBBX32a was higher in flower,leaf and pod,while the expression level of GmBBX32b was higher in pod and flower,indicating that GmBBX32a and GmBBX32b might be involved in flowering and seed size formation in soybean.In addition,the knockout vectors of GmBBX32a and GmBBX32b were constructed and transformed into soybean hair roots for target detection by using CRISPR/Cas9 technology,which should be provide efficient editing target information for the next generation of stable transgenic materials.Our work provides a theoretical basis for in-depth analysis of the complex molecular mechanisms in regulating soybean yield traits.

References:

[1]Preuss S B,Meister R,Xu Q,et al.Expression of the Arabidopsis thaliana BBX32 gene in soybean increases grain yield[J].PLOS One,2012,7(2):e30717.[2]Alston J M,Beddow J M,Pardey P G.Agricultural research,productivity,and food prices in the long run[J].Science,2009,325(5945):1209-1210.[3]Schmidt M A,Herman E M.Characterization and functional biology of the soybean aleurone layer[J].BMC Plant Biology,2018,18(1):354.[4]Ravi R,Taheri A,Khandekar D,et al.Rapid profiling of soybean aromatic compounds using electronic nose[J].Biosensors,2019,9(2):66.[5]林晓雅,刘宝辉,孔凡江.大豆适应性的分子遗传基础[J].自然杂志,2019,41(3):174-182.(Lin X Y,Liu B H,Kong F J.Molecular basis of soybean adaptation to long days and short days[J].Chinese Journal of Nature,2019,41(3):174-182.)[6]查霆,钟宣伯,周启政,等.我国大豆产业发展现状及振兴策略[J].大豆科学,2018,37(3):458-463.(Cha T,Zhong X B,Zhou Q Z,et al.Development status of China′s soybean industry and strategies of revitalizing[J].Soybean Science,2018,37(3):458-463.)[7]Zhang Y H,Liu M F,He J B,et al.Marker-assisted breeding for transgressive seed protein content in soybean[J].Theoretical and Applied Genetics,2015,128(6):1061-1072.[8]Laity J H,Lee B M,Wright P E.Zinc finger proteins:New insights into structural and functional diversity[J].Current Opinion in Structural Biology,2001,11(1):39-46.[9]杨宁,从青,程龙军.植物BBX转录因子基因家族的研究进展[J].生物工程学报,2020,36(4):666-677.(Yang N,Cong Q,Cheng L J.BBX transcriptional factors family in plants–A review[J].Chinese Journal of Biotechnology,2020,36(4):666-677.)[10]房鸿成.B-box转录因子介导UV-B和温度调控苹果果实着色的机理[D].泰安:山东农业大学,2019.(Fang H C.Mechanisms of B-box transcription factor mediated UV-B and temperature regulation on apple fruit coloring[D].Taian:Shandong Agricultural University,2019.[11]王伟平,张超,黎妮.水稻锌指蛋白基因OsBBX6的克隆、表达及生物信息学分析[J].基因组学与应用生物学,2019,38(5):2120-2127.(Wang W P,Zhang C,Li N.Cloning,expression and bioinformatics analysis of zinc finger protein OsBBX6 in rice[J].Genomics and Applied Biology,2019,38(5):2120-2127.)[12]韩久盼.AtBBX21在拟南芥UV-B光形态建成中的功能研究[D].厦门:厦门大学,2018.(Han J P.Function of AtBBX21 in UV-B-Induced photomorphogenesis in Arabidopsis[D].Xiamen:Xiamen University,2018.)[13]Gangappa S N,Crocco C D,Johansson H,et al.The Arabidopsis B-BOX protein BBX25 interacts with HY5,negatively regulating BBX22 expression to suppress seedling photomorphogenesis[J].The Plant Cell,2013,25(4):1243-1257.[14]Job N,Yadukri shnan P,Bursch K,et al.Two B-box proteins regulate photomorphogenesis by oppositely modulating HY5 through their diverse C-terminal domains[J].Plant Physiology,2018,176(4):2963-2976.[15]李琳,丁峰,潘介春,等.植物锌指蛋白转录因子家族研究进展[J].热带农业科学,2020,40(2):65-75.(Li L,Ding F,Pan J C,et al.Research progress on family of plant zinc-finger protein transcription factors[J].Chinese Journal of Tropical Agriculture,2020,40(2):65-75.)[16]Gangappa S N,Botto J F.The BBX family of plant transcription factors[J].Trends in Plant Science,2014,19(7):460-470.[17]Khanna R,Kronmiller B,Maszle D R,et al.The Arabidopsis B-box zinc finger family[J].The Plant Cell,2009,21(11):3416-3420.[18]Huang J Y,Zhao X B,Weng X Y,et al.The rice B-box zinc finger gene family:Genomic identification,characterization,expression profiling and diurnal analysis[J].PLoS One,2012,7(10):e48242.[19]冯江浩,魏思昂,闫丽欢,等.CRISPR/Cas9基因编辑技术及应用研究概述[J].动物医学进展,2021,42(3):123-126.(Feng J H,Wei S A,Yan L H,et al.Progress on gene editing technology and application of CRISPR/Cas9[J].Progress in Veterinary Medicine,2021,42(3):123-126.)[20]罗银,刘峰.CRISPR/Cas9技术在作物中的研究及应用进展[J].作物研究,2020,34(6):588-596.(Luo Y,Liu F.Research and application progress of CRISPR/Cas9 in crops[J].Crop Research,2020,34(6):588-596.)[21]Shan Q W,Wang Y P,Li J,et al.Targeted genome modification of crop plants using a CRISPR-Cas system[J].Nature Biotechnology,2013,31(8):686-688.[22]张敏,徐胜利,贺红利,等.GmGASA6基因CRISPR-Cas9载体构建及大豆的遗传转化[J].吉林师范大学学报(自然科学版),2021,42(1):104-110.(Zhang M,Xu S L,He H L,et al.Construction of GmGASA6 CRISPR-Cas9 vector and genetic transformation of soybean[J].Journal of Jilin Normal University(Natural Science Edition),2021,42(1):104-110.)[23]甘卓然,石文茜,黎永力,等.大豆生物钟基因GmLNK1/2、GmRVE4/8和GmTOC1 CRISPR/Cas9组织表达分析及敲除靶点的鉴定[J].作物学报,2020,46(8):1291-1300.(Gan Z R,Shi W Q,Li Y L,et al.Identification of CRISPR/Cas9 knockout targets and tissue expression analysis of circadian clock genes GmLNK1/2,GmRVE4/8,and GmTOC1 in soybean[J].Acta Agronomica Sinica,2020,46(8):1291-1300.)[24]Machado F B,Moharana K C,Fabricio A S,et al.Systematic analysis of 1,298 RNA-Seq samples and construction of a comprehensive soybean (Glycine max) expression atlas[J].The Plant Journal,2020,103:1894-1909.[25]Chen C,Chen H,Zhang Y,et al.TBtools:An integrative Toolkit developed for interactive analyses of big biological data[J].Molecular Plant,2020,13:1194-1202.[26]曾栋昌,马兴亮,谢先荣,等.植物CRISPR/Cas9多基因编辑载体构建和突变分析的操作方法[J].中国科学:生命科学,2018,48(7):783-794.(Zeng D C,Ma X L,Xie X R,et al.A protocol for CRISPR/Cas9-based multi-gene editing and sequence decoding of mutant sites in plants[J].Scientia Sinica(Vitae),2018,48:783-794.)[27]Cheng Q,Dong L,Gao T,et al.The bHLH transcription factor GmPIB1 facilitates resistance to Phytophthora sojae in Glycine max[J].Journal of Experimental Botany,2018,69(10):2527-2541.[28]Holtan H E,Bandong S,Marion C M,et al.BBX32,an Arabidopsis B-Box protein,functions in light signaling by suppressing HY5-regulated gene expression and interacting with STH2/BBX21[J].Plant Physiology,2011,156(4):2109-2123.[29]Tripathi P,Carvallo M,Hamilton E E,et al.Arabidopsis B-BOX32 interacts with CONSTANS-LIKE3 to regulate flowering[J].Proceedings of the National Academy of Sciences of the United States of America,2017,114(1):172-177.[30]冯蓝萍.梅花锌指蛋白基因PmZAT12和PmBBX32在低温胁迫下的功能研究[D].武汉:华中农业大学,2019.(Feng L P.Functional analysis of zinc finger protein genes PMZAT12 and PMBBX32 in prunus mume under low the perature stress[D].Wuhan:Huazhong Agricultural University,2019.)[31]Qi Q,Gibson A,Fu X,et al.Involvement of the N-terminal B-box domain of Arabidopsis BBX32 protein in interaction with soybean BBX62 protein[J].Journal of Biological Chemistry,2012,287(37):31482-31493.[32]Cheng Q,Dong L,Su T,et al.CRISPR/Cas9-mediated targeted mutagenesis of GmLHY genes alters plant height and internode length in soybean[J].BMC Plant Biology,2019,19(1):562.[33]关贝贝,王燕娟,陈海峰,等.CRISPR/Cas9介导的多基因编辑系统在大豆中的应用[J].中国油料作物学报,2021,43(1):149-160.(Guan B B,Wang Y J,Chen H F,et al.Application of CRISPR/Cas9-mediated multiplex genome editing system in soybean genome editing[J].Chinese Journal of Oil Crop Sciences,2021,43(1):149-160.)

Memo

Memo:
-
Last Update: 2021-09-27