|Table of Contents|

Whole-Genome Sequencing and Analysis of Cercospora Sojina Race 15(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2021年04期
Page:
466-475
Research Field:
Publishing date:

Info

Title:
Whole-Genome Sequencing and Analysis of Cercospora Sojina Race 15
Author(s):
(GU XinYANG Xiao-heYAO Liang-liangGAO Xue-dongZHANG Mao-mingLIU Wei ZHAO Hai-hongDING Jun-jie
(Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences/Jiamusi Comprehensive Test Station of National Soybean Industrial Technology System/Ministry of Agriculture Harmful Biology of Crop Scientific Monitoring Station Jiamusi Experiment Station, Jiamusi 154007, China)
Keywords:
Cercospora sojina Race 15 Whole genome sequencing Gene function annotation Virulence-associated genes
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2021.04.0466
Abstract:
The new Race 15 of Cercospora sojina has infectivity and physiological race differentiation, which has caused the breakdown of resistance in most soybean cultivars. To analyze its infection mechanism at the genome level, this research adopted the whole-genome sequencing for preliminary genomics research. The results showed that 601 794 high quality reads were generated by PacBio sequencing, covering 6 038 283 778 bp in total, and having a mean length of 10 033 bp and an N50 length of 13 900 bp. The genome of the Race 15 strain of Cercospora sojina (40.12 Mb) consisted of 12 curated contigs, with an 4.9 Mb N50, and 12 607 coding genes were predicted with a gene density of approximately 314 genes per Mb. Additionally, non-coding genes were predicted, with 200 tRNA, 2 sRNA and 13 snRNA genes being predicted in the genome of Race 15. A total of 680 genes were annotated and classified using the PHI database, 340 genes were annotated in the CAZy database, 777 genes were predicted to be related to secondary metabolism and 766 genes were predicted as secretory proteins. These virulence-related pathogenic genes are mainly involved in cell wall degrading enzymes, fungal morphology, toxins and pigment biosynthesis.

References:

[1]Dashiell K E, Akem C N. Yield losses in soybeans from frogeye leaf spot caused by Cercospora sojina[J]. Crop Protection, 1991, 10(6): 465-468.[2]Boerma H R, Specht J E, Boerma H R, et al. Soybeans:Improvement, production and uses[M]. Madison: ASA, CSSA, and SSSA, 2004: 679-763.[3]Athow K L, Probst A H. The inheritance of resistance to frogeye leaf spot of soybean[J]. Phytopathology, 1952, 42(12): 660-662.[4]Athow K L, Probst A H, Kurtzman C P, et al. A newly identified physiological race of Cercospora sojina on soybean[J]. Phytopathology, 1962, 52: 712-714.[5]Yorinori J T, Homechin M. Races of Cercospora sojina in Parajme Brazil[C]//3rd. Munich: International Congress of Plant Pathology, 1978: 16-23.[6]黄桂潮, 霍虹, 张再兴, 等. 大豆灰斑病菌(Cercospora Sojina Hara)生理小种鉴定结果初报[J]. 大豆科学, 1984, 3(3): 231-235. (Huang G C, Huo H, Zhang Z X, et al. Preliminary reporton the identification results of physiological races of Cercospora Sojina Hara[J]. Soybean Science, 1984, 3(3): 231-235.)[7]霍虹, 马淑梅, 卢官仲. 黑龙江省大豆灰斑病菌(Cercospora sojina Hara)生理小种的研究[J]. 大豆科学, 1988, 7(4): 315-320. (Huo H, Ma S M, Lu G Z. Study on the physiological race of Cercospora sojina Hara in Heilongjiang Province[J]. Soybean Science, 1988, 7(4): 315-320.)[8]丁俊杰, 文景芝, 胡国华. 黑龙江省大豆灰斑病生理小种监测及主栽品种抗性分析[J]. 大豆科学, 2009, 28(1): 178-180. (Ding J J, Wen J Z, Hu G H. Physiological race monitoring of soybean gray spot disease in Heilongjiang Province and resistance analysis of main varieties[J]. Soybean Science, 2009, 28(1): 178-180.)[9]刘洋大川, 潘春清, 孙洪利. 2008—2009年黑龙江省大豆灰斑病菌生理小种的监测[J]. 东北农业大学学报, 2010, 41(11): 10-16. (Liu Y D C, Pan C Q, Sun H L. Surveillance of the physiological races of gray leaf spot pathogen of soybean in Heilongjiang Province from 2008 to 2009[J]. Journal of Northeast Agricultural University, 2010, 41(11): 10-16.)[10]曹越平, 李海英, 刘学敏. 等. 大豆灰斑病菌(Cercospora sojina Hara)及其对寄主作用的研究[J]. 植物病理学报, 2003, 32(2): 116-120. (Chao Y P, Li H Y, Liu X M, et al. Cercospora sojina Hara and its effect on the host[J]. Chinese Journal of Phytopathology, 2003, 32(2):116-120.)[11]姜翠兰, 丁俊杰, 文景芝, 等.大豆对灰斑病菌15号小种的抗病基因定位及标记检测[J]. 植物保护学报, 2011, 38(2): 116-120. (Jiang C L, Ding J J, Wen J Z, et al. Identification and mapping of the Cercospora sojina race 15 resistance gene in soybean[J]. Acta Phytophylacica Sinica, 2011, 33(1):57-61.)[12]顾鑫, 丁俊杰, 杨晓贺, 等. 2008—2009年黑龙江省大豆灰斑病生理小种的监测[J]. 大豆科学, 2010, 29(3): 540-542. (Gu X, Ding J J, Yang X H, et al. Surveillance of the physiological races of soybean gray spot disease in Heilongjiang Province from 2008 to 2009[J]. Soybean Science, 2010, 29 (3): 540-542.)[13]马淑梅. 2006—2010年黑龙江省大豆灰斑病菌生理小种监测及部分主栽品种抗性鉴定[J]. 大豆科学, 2011, 30(3): 450-454. (Ma S M. Physiological race monitoring of gray leaf spot pathogen of soybean in Heilongjiang Province from 2006 to 2010 and identification of resistance of some main cultivated varieties[J]. Soybean Science, 2011, 30(3): 450-454.)[14]丁俊杰, 顾鑫, 杨晓贺, 等. 黑龙江省大豆灰斑病菌生理小种及遗传关系分析[J]. 中国农业科学, 2012, 45(21): 4377-4387. (Ding J J, Gu X, Yang X X, et al. Analysis of the physiological race and genetic relationship of soybean gray leaf spot in Heilongjiang Province[J]. Chinese Agricultural Sciences, 2012, 45(21): 4377-4387.)[15]刘学敏, 李利军, 惠东威, 等. 大豆灰斑病菌DNA指纹图谱初步分析[J]. 遗传学报, 1998(4): 362-366. (Liu X M, Li L J, Hui D W, et al. Preliminary analysis of DNA fingerprinting of soybean gray leaf spot pathogen[J]. Acta Genetics, 1998(4): 362-366.)[16]Zeng F, Wang C, Zhang G R. Draft genome sequence of Cercospora sojina isolate S9, a fungus causing frogeye leaf spot (FLS) disease of soybean[J]. Genomics Data, 2017(12): 79-80.[17]刘林, 李成云, 杨静, 等. 稻瘟病菌ABC转运蛋白基因中SSR的分布及其功能预测[J]. 植物病理学报, 2011, 41(4): 371-378. (Liu L, Li C Y, Yang J, et al. The distribution and function prediction of SSR in the ABC transporter gene of Magnaporthe grisea[J]. Acta Phytopathology, 2011, 41(4): 371-378.)[18]Daub M E, Ehrenshaft M. The photoactivated Cercospora toxin cercosporin: Contributions to plant disease and fundamental biology[J]. Annual Review of Phytopathology, 2000, 38: 461-490.[19]Luo X, Cao J, Huang J, et al. Genome sequencing and comparative genomics reveal the potential pathogenic mechanism of Cercospora sojina Hara on soybean[J]. DNA Research, 2017, 25(1): 25-37. [20]Shrestha S K, Cochran A, Mengistu A, et al. Genetic diversity, QoI fungicide resistance, and mating type distribution of Cercospora sojina—Implications for the disease dynamics of frogeye leaf spot on soybean[J]. Plos One, 2017, 12(5): e0177220. [21]张伟. 捕食性真菌Duddingtonia flagrans全基因组测序及基于转录组分析的捕食相关基因研究[D]. 呼和浩特: 内蒙古农业大学, 2017: 17. (Zhang W. Predatory fungus Duddingtonia flagrans whole genome sequencing and predation-related genes based on transcriptome analysis[D]. Hohhot: Inner Mongolia Agricultural University, 2017: 17.)[22]李焕宇, 付婷婷, 张云, 等. 5种方法提取真菌基因组 DNA作为PCR模板效果的比较[J]. 中国农学通报, 2017, 33(16): 28-35. (Li H Y, Fu T T, Zhang Y, et al. Comparison of the effects of five methods for extracting fungal genomic DNA as PCR templates[J]. Chinese Agricultural Science Bulletin, 2017, 33(16): 28-35.)[23]贾乐东. 甘蓝型油菜隐性杂合两型系SLAB育性候选基因的筛选鉴定[D]. 重庆: 西南大学, 2017:32. (Jia L D. Screening and identification of SLAB fertility candidate genes in recessive heterozygous two-type lines of Brassica napus[D]. Chongqing: Southwest University, 2017: 32.)[24]王义华. 葡萄属叶绿体基因组分析及其系统发育研究[D]. 武汉: 华中农业大学, 2018:15. (Wang Y H. Chloroplast genome analysis of Vitis and its phylogeny[D]. Wuhan: Huazhong Agricultural University, 2018:15.)[25]白健. 应用新一代基因组学技术的复杂疾病基因定位研究[D]. 北京: 中国科学院北京基因组研究所, 2013: 22-23. (Bai J. Research on gene mapping of complex diseases using new generation genomics technology[D]. Beijing: Beijing Institute of Genomics, Chinese Academy of Sciences, 2013: 22-23.)[26]张娜. 一株贫营养细菌的生物学特性及其对贫瘠土壤的改良作用[D]. 银川: 宁夏大学, 2017: 20.(Zhang N. The biological characteristics of a poor nutrient bacterium and its improvement on poor soil [J]. Yinchuan: Ningxia University, 2017:20.)[27]谢海坤, 焦健, 樊秀彩, 等. 基于高通量测序组装“赤霞珠”叶绿体基因组及其特征分析[J]. 中国农业科学, 2017, 50(9): 1655-1665. (Xie H K, Jiao J, Fan X C, et al. Assembling and characteristic analysis of the complete chloroplastgenome of Vitis vinifera cv. Cabernet Sauvignon from high-throughput sequencing data[J]. Scientia Agricultura Sinica, 2017, 50(9): 1655-1665.) [28]张继垒. 犬埃立克体(Ehrlichia canis)分离鉴定、基因组学及动物感染模型的建立[D].扬州: 扬州大学, 2018:110. (Zhang J L. Ehrlichia canis isolation and identification, genomics and animal infection model establishment[D]. Yangzhou: Yangzhou University, 2018:110.)[29]Stanke M, Diekhans M, Baertsch R, et al. Using native and syntenically mapped cDNA alignments to improve de novo gene finding[J]. Bioinformatics, 2008, 24(5): 637-644.[30]Saha S, Bridges S, Magbanua Z V, et al. Empirical comparison of abinitio repeat finding programs[J]. Nucleic Acids Research, 2008, 36(7): 2284-2294. [31]Benson G. Tandem repeats finder: A program to analyze DNA sequences[J]. Nucleic Acids Research, 1999, 27(2): 573-580. [32]Lowe T M, Eddy S R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence[J]. Nucleic Acids Research, 1997, 25(5): 955-964.[33]Lagesen K, Hallin P, Rdland E A, et al. RNAmmer: Consistent and rapid annotation of ribosomal RNA genes[J]. Nucleic Acids Research, 2007, 35(9): 3100-3108.[34]Gardner P P, Daub J, Tate J G, et al. Rfam: Updates to the RNA families database[J]. Nucleic Acids Research, 2009, 37(S1): 136-140.[35]Nawrocki E P, Kolbe D L, Eddy S R. Infernal 1.0: Inference of RNA alignments[J]. Bioinformatics, 2009, 25(10): 1335-1337. [36]Ashburner M, Ball C A, Blake J A, et al. Gene ontology: Tool for the unification of biology[J]. Nature Genetics, 2000, 25(1): 25-29.[37]Kanehisa M, Goto S, Kawashima S, et al. The KEGG resource for deciphering the genome[J]. Nucleic Acids Research, 2004, 32(S1): D277-D280.[38]Kanehisa M, Goto S, Hattori M, et al. From genomics to chemical genomics: New developments in KEGG[J]. Nucleic Acids Research, 2006, 34(suppl 1): D354-D357.[39]Li W, Jaroszewski L, Godzik A. Tolerating some redundancy significantly speeds up clustering of large protein databases [J]. Bioinformatics, 2002, 18(1): 77-82.[40]Milton S J, Vamsee S R, Dorjee G T, et al. The transporter classification database[J]. Nucleic Acids Research, 2014. doi:10.1093/nar/gkt1097.[41]Amos B, Rolf A. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000[J]. Nucleic Acids Research, 2000, 28(1): 45-48.[42]Cantarel B L, Coutinho P M, Rancurel C, et al. The Carbohydrate-Active EnZymes database (CAZy): An expert resource for glycogenomics[J]. Nucleic Acids Research, 2009, 37(S1): D233-D238.[43]Kretschmer M, Reiner E, Hu G, et al. Defects in phosphate acquisition and storage influence virulence of Cryptococcus neoformans[J]. Infection and Immunity, 2014, 82(7): 2697-2712.[44]Tseng M N, Chung P C, Tzean S S. Enhancing the stress tolerance and virulence of an entomopathogen by metabolic engineering of dihydroxynaphthalene melanin biosynthesis genes[J]. Applied and Environmental Microbiology, 2011, 77(13):4508-4519.[45]Jacobson E S. Pathogenic roles for fungal melanins[J]. Clinical Microbiology Reviews, 2000, 13: 708-717.[46]Nosanchuk J D, Casadevall A. The contribution of melanin to microbial pathogenesis[J]. Cellular Microbiology, 2010, 5(4): 203-223. [47]Nosanchuk J D, Casadevall A. Impact of melanin on microbial virulence and clinical resistance to antimicrobial compounds[J]. Antimicrobial Agents & Chemotherapy, 2006, 50(11): 3519-3528.[48]Xue M, Yang J, Li Z, et al. Comparative analysis of the genomes of two field isolates of the rice blast fungus Magnaporthe oryzae[J]. PLoS Genet, 2012, 8(8): e1002869.[49]Liu Q P, Sulzenbacher G, Yuan H, et al. Bacterial glycosidases for the production of universal red blood cells[J]. Nature Biotechnology, 2007, 25(4): 454-464.[50]Benhamou N, Ouellette G B.Ultrastructural localization of glycoconjugates in the fungus Ascocalyx abietina, the Scleroderris canker agent of conifers, using lectin-gold complexes[J]. Journal of Histochemistry & Cytochemistry, 1986, 34(7):855-867.[51]Barkai-Golan R, Mirelman D, Sharon N. Studies on growth inhibition by lectins of Penicillia and Aspergilli[J]. Archives of Microbiology, 1978, 116(2): 119-121.[52]Guo P, Wang Y, Zhou X, et al. Expression of soybean lectin in transgenic tobacco results in enhanced resistance to pathogens and pests[J]. Plant Science, 2013, 211(3): 17-22.[53]董章勇, 王振中. 植物病原真菌细胞壁降解酶的研究进展[J].湖北农业科学, 2012, 51(21): 4697-4700. (Dong Z Y, Wang Z Z. Research progress on cell wall degrading enzymes of plant pathogenic fungi[J]. Hubei Agricultural Sciences, 2012, 51(21): 4697-4700.)[54]陈夕军, 张红, 徐敬友, 等. 水稻纹枯病菌胞壁降解酶的产生及致病作用[J]. 江苏农业学报, 2006,22(1): 24-28. (Chen X J, Zhang H, Xue J Y, et al. Cell wall degrading enzymes produced by Rhizoctonia solani and their pathogenicity to rice plants[J]. Jiangsu Journal of Agricultural Sciences, 2006,22(1): 24-28.)[55]赵艳琴, 吴元华, 伏颖, 等. 烟草靶斑病菌(Rhizoctonia solani)细胞壁降解酶活性分析及其致病作用[J]. 烟草科技, 2014(11): 84-88. (Zhao Y Q, Wu Y H, Fu Y, et al. Activity pathogenic effect of cell wall degrading enzyme in tobacco target spot pathogen Rhizoctonia solani[J]. Tobacco Science & Technology, 2014(11): 84-88.)[56]李庆亮, 李捷, 李夏鸣, 等. 细胞壁降解酶在苹果霉心病菌致病过程中的作用研究[J]. 中国农学通报, 2015, 31(31): 90-95. (Li Q L, Li J, Li X M, et al. The role of cell wall degradation enzymes in the pathogenic processes of apple mouldy core caused by Alternaria alternate and Trichothecium roseum[J]. Chinese Agricultural Science Bulletin, 2015, 31(31): 90-95.)[57]Sasaki I, Nagayama H. β-Glucosidase from Botrytis cinerea: Its relation to the pathogenicity of this fungus[J]. Journal of the Agricultural Chemical Society of Japan, 1994, 58(4): 616-620.[58]王鹏程, 郝海婷, 王兰, 等. 枣黑斑病菌细胞壁降解酶活性测定及致病性分析[J]. 果树学报, 2019,36(7): 903-910. (Wang P C, Hao H T, Wang L, et al. Analysis of cell wall degrading enzymes from black spot pathogen and its pathogenicity[J]. Journal of Fruit Science, 2019,36(7): 903-910.)[59]田呈明, 赵鹏, 曹支敏. 细胞壁降解酶在落叶松-杨栅锈菌与寄主互作过程中的作用[J]. 林业科学, 2008,44(5): 79-83. (Tian C M, Zhao P, Chao Z M. Role of cell wall-degrading enzymes in interaction of poplar and Melampsora larici-populina[J].Scientia Silvae Sinicae, 2008,44(5): 79-83.)[60]Boraston A, Bolam D, Gilbert H, et al. Carbohydrate-binding modules: Fine-tuning polysaccharide recognition[J]. Biochemical Journal, 2004, 382(3): 769.[61]Receveur V, Czjzek M, Schulein M, et al. Dimension, shape, and conformational flexibility of a two domain fungal cellulase in solution probed by small angle X-ray scattering[J]. Journal of Biological Chemistry, 2002, 277(43): 40887-40892.[62]Varnai A, Siika-Aho M, Viikari L. Carbohydrate-binding modules (CBMs)revisited: Reduced amount of water counterbalances the need for CBMs[J]. Biotechnol Biofuels, 2013, 6(1): 30.[63]Song W, Han X, Qian Y, et al. Proteomic analysis of the biomass hydrolytic potentials of Penicillium oxalicum lignocellulolytic enzyme system[J]. Biotechnology for Biofuels, 2016, 9(1): 68.[64]Sims J W, Fillmore J P, Warner D D, et al. Equisetin biosynthesis in Fusarium heterosporum[J]. Chemical Communications, 2005, 18(2): 186. [65]Song Z, Cox R J, Lazarus C M, et al. Fusarin C biosynthesis in Fusarium moniliforme and Fusarium venenatum[J]. Combining Chemistry and Biology, 2004, 5(9): 1196-1203.[66]Bergmann S, Schümann J, Scherlach K, et al. Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans[J]. Nature Chemical Biology, 2007, 3(4): 213-217.[67]Bohnert H U. A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice[J]. Plant Cell, 16(9): 2499-2513.

Memo

Memo:
-
Last Update: 2021-08-06