|Table of Contents|

Comprehensive Evaluation and Screening of High Density Resistant Soybean Germplasm Based on Tightness Tolerance Index and Principal Component Analysis(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2021年04期
Page:
445-456
Research Field:
Publishing date:

Info

Title:
Comprehensive Evaluation and Screening of High Density Resistant Soybean Germplasm Based on Tightness Tolerance Index and Principal Component Analysis
Author(s):
HAN De-zhi1 WANG Shu1 JIA Hong-chang1 ZHANG Lei1 LU Wen-cheng1 LI Ying-hui2 QIU Li-juan2
(1.Heihe Branch, Heilongjiang Academy of Agricultural Sciences, Heihe 164300, China; 2.Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture, Beijing 100081, China)
Keywords:
Soybean Density tolerance traits Density resistance index Principal component analysis Comprehensive evaluation Screening
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2021.04.0445
Abstract:
To screen and select soybean germplasms resistant to high densities, this study used 90 soybean germplasm resources obtained from early screening as the experimental materials, and used the ratio of each density tolerance trait at the condition of high density and conventional density as the basic data, evaluated the density tolerance of soybean comprehensively through two kinds of methods of resistance index together with the principal component analysis. The results showed that under high density stress, seed weight per plant was the greatest affected, followed by branch-related traits, and cotyledon scar diameter. The coincidence degree of the two evaluation methods was 42.8%. The two methods comprehensively identified 8 species that were resistant to high density planting, which were Seed nursery, Heihe 49, Hejiao N13-333, Sakamoto precocity soybean, Heihe 44, Zhongke Madou 2, N07 and Heihe 43. The results provided the material basis for the theoretical research of soybean tightness tolerance and the breeding of new cultivars with tightness tolerance.

References:

[1]常汝镇. 关于栽培大豆起源的研究[J]. 中国油料, 1989(1): 3-9. (Chang R Z. Studies on the origin of cultivated soybean[J]. Chinese Journal of Oil Crop Sciences, 1989(1): 3-9.)[2]邱丽娟, 常汝镇, 袁翠平, 等. 国外大豆种质资源的基因挖掘利用现状与展望[J]. 植物遗传资源学报, 2006(1): 1-〖KG*9〗6. (Qiu L J, Chang R Z, Yuan C P, et al. Prospect and present statue of gene discovery and utilization for introduced soybean germplasm[J]. Journal of Plant Genetic Resources, 2006(1): 1-〖KG*9〗6.)[3]盖钧镒. 美国大豆育种的进展和动向[J]. 大豆科学, 1984, 3(1): 70-80. (Gai J Y. Advances and trends in soybean breeding in the United States[J]. Soybean Science, 1984, 3(1): 70-80.)[4]郭泰, 郭美玲, 冯宪忠, 等. 矮秆耐密植大豆新品种合农91选育与高产创建[J]. 大豆科学, 2019, 39(4): 664-667. (Guo T, Guo M L, Feng X Z, et al. Breeding and high yield establishment of dwarf stalks resistant to dense planting new soybean variety Henong 91[J]. Soybean Science, 2019, 39(4): 664-667.)[5]刘念析, 董志敏, 厉志, 等. 不同矮杆大豆品种的耐密性研究[J]. 农学学报,2020,10(1):1-6. (Liu N X, Dong Z M, Li Z, et al. The density tolerance of dwarf soybean varieties[J]. Journal of Agriculture, 2020, 10(1): 1-6.)[6]刘玉兰, 陈殿元, 元明浩, 等. 种植密度对小粒大豆光合生产能力的影响[J].大豆科学, 2018, 37(4): 551-557. (Liu Y L, Chen D Y, Yuan M H, et al. Effects of planting density on photosynthetic capactity of Glycine gracilis[J]. Soybean Science, 2018, 37(4): 551-557.)[7]谢甫绨, 董钻, 王晓光, 等. 大豆倒伏对植株性状和产量的影响[J]. 大豆科学, 1993, 12(1): 81-85. (Xie F T, Dong Z, Wang X G, et al. Effects of lodging on plant characters and yield of soybean[J]. Soybean Science, 1993, 12(1): 81-85.)[8]杨梦平, 潘丽丽, 张勇, 等. 株距对不同株型大豆农艺性状及产量的影响[J].大豆科学, 2017, 36(3): 377-384. (Yang M P, Pan L L, Zhang Y, et al. Effect of plant spacing on agronomic trait and yield of different plant type soybean[J]. Soybean Science, 2017, 36(3): 377-384.)[9]吕书财. 密度对大豆冠层光合有效辐射和抗倒伏特性的影响[D]. 哈尔滨: 东北农业大学, 2017. (Lyu S C. Study on changes of photosynthetically active radiation and lodging resistance of soybean canopy[D]. Harbin: Northeast Agricultural University, 2017.)[10]元明浩, 杨翠莲. 不同密度下有限分枝型矮秆耐密大豆产量因素变化规律[J]. 安徽农业科学, 2009, 37(18): 8408-8410. (Yuan M H, Yang C L. Changing low of limited branching type, dwarf and dense resistant soybean under different densities[J]. Journal of Anhui Agricultural Sciences, 2009, 37(18): 8408-8410.)[11]元明浩, 刘玉兰, 杨翠莲. 不同密度下有限结荚习性分枝型矮秆耐密大豆的株型变化规律[J]. 大豆科学, 2009, 28(3): 552-556. (Yuan M H, Liu Y L, Yang C L. Effect of planting density on plant type of determinate soybean with short stature and dense resistant traits[J]. Soybean Science, 2009, 28(3): 552-556.)[12]李灿东, 赵建有, 郭泰, 等. 不同密度下主茎亚有限型大豆株型及产量的变化规律[J]. 中国农学通报, 2014, 30(30): 164-167. (Li C D, Zhao J Y, Guo T, et al. Effects of planting density on plant type and yield of main emi-determinate soybean[J]. Chinese Agricultural Science Bulletin, 2014, 30(30): 164-167.)[13]张瑞朋, 付连舜, 佟斌, 等.密度及行距对不同大豆品种农艺性状及产量的影响[J]. 大豆科学, 2015, 34(1): 52-55.(Zhang R P, Fu L S, Tong B, et al. Effect of plant density and row spacing on agronomic characteristics and yield for different soybeans[J]. Soybean Science, 2015, 34(1): 52-55.)[14]李灿东, 郭泰, 郑伟, 等. 播种密度及施肥水平对耐密植大豆合农76产量性状的影响[J]. 大豆科学, 2017,36(5): 727-732, 736. (Li C D, Guo T, Zheng W, et al. Effect of sowing density and fertilizer levels on the yield traits of high dense planting soybean cultivar Henong 76[J]. Soybean Science, 2017,36(5): 727-732, 736.)[15]郑伟, 谢甫绨, 郭泰, 等. 种植密度对不同耐密性大豆品种特性的影响[J]. 大豆科学, 2015, 34(2): 255-259. (Zheng W, Xie F T, Guo T, et al. Effect of planting density on characteristics of soybean cultivars with different density tolerance[J]. Soybean Science, 2015, 34(2): 255-259.)[16]李灿东, 郭泰, 王志新, 等. 大豆耐密性状与产量的相关分析[J]. 大豆科学, 2019, 38(6): 862-867. (Li C D, Guo T, Wang Z X, et al. Correlation analysis of density tolerance traits and yield on soybean[J]. Soybean Science, 2019, 38(6): 862-867.)[17]任小俊, 吕新云, 马俊奎. 种植密度与施肥水平对山西早熟夏大豆产量与主要农艺性状的影响[J]. 大豆科学, 2019, 38(6): 921-927. (Ren X J, Lyu X Y, Ma J K. Effects of different planting densities and fertilization levels on yield and main agronomic characters of early-maturing summer soybean in Shanxi Province [J]. Soybean Science, 2019, 38(6): 921-927.)[18]李灿东.大豆种质资源耐密性评价及鉴定指标筛选[J]. 大豆科学, 2020, 39(5): 688-695. (Li C D. Evaluation of density-tolerance in soybean germplasm resources and screening of its identification indexes[J]. Soybean Science, 2020, 39(5): 688-695.)[19]邱丽娟, 常汝镇. 大豆种质资源描述规范和数据标准[M]. 北京: 中国农业出版社, 2006. (Qiu L J, Chang R Z. Soybean germplasm specifications description and data standards[M]. Beijing: China Agricultural Press, 2006.) [20]宋英博, 张敬涛, 王囡囡, 等. 大豆窄行密植与垄三栽培主要性状的关联度分析[J]. 东北农业大学学报, 2010, 41(7): 135-139. (Song Y B, Zhang J T, Wang N N, et al. Grey correlation degree analysis on major traits of narrow row and dense growth and three lines of ridge cultivation in soybean[J]. Journal of Northeast Agricultural University, 2010, 41(7): 135-139.)[21]王富贵, 于晓芳, 高聚林, 等. 高种植密度条件下玉米杂交种耐密性鉴选指标及评价方法[J]. 玉米科学, 2017, 25(6): 119-126. (Wang F G, Yu X F, Gao J L, et al. Indexes screening and comprehensive evaluation of density tolerance of maize hybrid under higher planting density[J]. Journal of Maize Sciences, 2017, 25(6): 119-126.)[22]杨锦越, 罗英舰, 宋碧, 等. 不同玉米品种耐密性分析及其鉴定指标的筛选[J]. 种子, 2019, 38(5): 80-85. (Yang J Y, Luo Y J, Song B, et al. Analysis of density tolerance and screening of identification indexes of different maize varieties[J]. Seed, 2019, 38(5): 80-85.) [23]李春红, 姚兴东, 鞠宝韬, 等. 不同基因型大豆耐荫性分析及其鉴定指标的筛选[J]. 中国农业科学, 2014, 47(15): 2927-2939. (Li C H, Yao X D, Ju B T, et al. Analysis of shade-tolerance and determination of shade-tolerance evaluation indicators in different soybean genotypes[J]. Scientia Agricultura Sinica, 2014, 47(15): 2927-2939.)[24]孙艳, 高海顺, 管志勇, 等. 菊花近缘种属植物幼苗耐阴特性分析及其评价指标的确定[J]. 生态学报, 2012, 32(6): 1908-1916. (Sun Y, Gao H S, Guan Z Y, et al. Analysis of shade-tolerance and determination of evaluation indicators of shade tolerance in seedling of Chrysanthemum grandiflorum and its closely related genera [J]. Acta Ecologica Sinica, 2012, 32(6): 1908-1916.)[25]郑云霄, 刘文斯, 赵永锋, 等. 玉米种质资源的抗倒伏性评价及鉴定指标筛选[J]. 植物遗传资源学报, 2019, 20(6): 1588-1596. (Zheng Y X, Liu W S, Zhao Y F, et al. Evaluation of lodging resistance and selection of identification indexes of maize germplasm resources[J]. Journal of Plant Genetic Resources, 2019, 20(6): 1588-1596.)[26]王秋兰, 靳鲲鹏, 刘永忠, 等. 玉米苗期抗旱性鉴定指标及综合评价[J]. 山西农业科学, 2019, 47(3): 319-322, 365. (Wang Q L, Jin K P, Liu Y Z, et al. Identification index and comprehensive evaluation of drought resistance in maize seedling stage[J]. Journal of Shanxi Agricultural Sciences, 2019(3): 319-322, 365.)[27]王玉斌, 平俊爱, 牛皓, 等. 粒用高粱种质中后期抗旱性鉴定筛选与分类指标评价[J]. 中国农业科学, 2019, 52(22): 4039-4052. (Wang Y B, Ping J A, Niu H, et al. Evaluation of identification and classification index for drought resistance at middle and late growth stage in grain sorghum germplasms[J]. Scientia Agricultura Sinica, 2019, 52(22): 4039-4052.)[28]杨锦越, 宋碧, 罗英舰, 等. 基于主成分分析及聚类分析对不同春玉米品种耐密性评价[J]. 中国种业, 2018(8): 51-55. (Yang J Y, Song B, Luo Y J, et al. Principal component analysis and cluster analysis were used to evaluate the tightness tolerance of different spring maize varieties [J]. China Seed Industry, 2018(8): 51-55.)[29]尹阳阳, 徐彩龙, 宋雯雯, 等. 密植是挖掘大豆产量潜力的重要栽培途径[J]. 土壤与作物, 2019,8(4): 361-367. (Yin Y Y, Xu C L, Song W W, et al. Increasing planting density is an important approach to achieve the potential of soybean yield[J]. Soils and Crops, 2019, 8(4): 361-367.)[30]张敬涛, 宋英博, 申晓慧, 等. 半矮秆大豆窄行密植超高产栽培产量性状及产量结构研究[J]. 大豆科学, 2009, 28(4): 636-640. (Zhang J T, Song Y B, Shen X H, et al. Soybean yield structure under the super-high yield cultivation mode with narrow row and dense seeded semi-dwarf cultivar[J]. Soybean Science, 2009, 28(4): 636-640.)[31]赵团结, 盖钧镒, 李海旺, 等. 超高产大豆育种研究的进展与讨论[J]. 中国农业科学, 2006, 39(1): 29-37. (Zhao T J, Gai J Y, Li H W, et al. Advances in breeding for super high-yielding soybean cultivars[J]. Scientia Agricultura Sinica, 2006, 39(1): 29-37.)

Memo

Memo:
-
Last Update: 2021-08-06