|Table of Contents|

Effects of Phosphate Levels on Agronomic Traits of Soybean Genotypes with Different Phosphate Efficiency Under Fe Deficiency(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2021年02期
Page:
249-256
Research Field:
Publishing date:

Info

Title:
Effects of Phosphate Levels on Agronomic Traits of Soybean Genotypes with Different Phosphate Efficiency Under Fe Deficiency
Author(s):
ZHANG Ming-hao YI Zhi-gang MENG Fan-gang YU De-bin ZHAO JingYAN Xiao-yan ZHANG Wei QIU Qiang
(Soybean Research Institute, Jilin Academy of Agricultural Sciences/National Engineering Research Center of Soybean, Changchun 130033, China)
Keywords:
P-efficient P-inefficient Agronomic traits P concentration Fe concentration
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2021.02.0249
Abstract:
In order to provide a theoretical basis for the rational application of phosphate fertilizer under Fe deficiency areas, in this study, the effects of different P∶Fe ratios on biological traits of soybean and genotypic differences were analyzed by sand culture and split blot design, with P-efficient and P-inefficient soybean genotypes as the experimental materials, further explored the relationship between agronomic traits and P/Fe traits in soybean, as well as effect of these traits on seed weight per plant,and their genotypic differences, and comprehensively evaluated the response of P-efficient and P-inefficient soybean genotypes to different P∶Fe treatments by factor scores. The results showed that, at R5 stage, the highest values of plant height, stem diameter, leaf area, leaf dry weight, stem dry weight, pods dry weight, shoot dry weight and root dry weight per plant of P-efficient genotypes reached their peak under P∶Fe ratio of 300∶30. Canonical correlation analysis showed that shoot dry weight at R5 stage of P-efficient genotypes was positively correlated with concentration ratio of Fe∶P in seed at R8 stage, while shoot dry weight of P-inefficient genotypes was positively correlated with P concentration in leaves at R3 stage. The seed weight per plant of both P-efficient genotypes and P-inefficient genotypes were correlated with Fe concentration in seed at R8 stage. But the effects of Fe concentration in seed at R8 stage on seed weights per plant of the two genotypes were opposite, this indicated that Fe concentration in seed at R8 stage was an important indicator for genotypic difference of seed weight per plant under low Fe condition. Comprehensive evaluation by factor score showed that when the P∶Fe ratio ranged from 1 to 10, the ACE value of P- efficient soybean genotypes increased with the increase of P∶Fe ratio, while the ACE value of P-inefficient soybean genotypes decreased with the increase of P∶Fe ratio. In conclusion, under iron deficiency stress, P-efficient soybean genotypes had the best comprehensive performance when the P∶Fe ratio was 300∶30, and P-inefficient soybean genotypes had the best comprehensive performance when the P∶Fe ratio was 30∶30.

References:

[1]Reyt G, Boudouf S, Boucherez J, et al. Iron and ferritin-dependent reactive oxygen species distribution: Impact on Arabidopsis root system architecture[J]. Molecular Plant, 2015, 8: 439-453.[2]Ward J T, Lahner B, Yakubova E, et al. The effect of iron on the primary root elongation of Arabidopsis during phosphate deficiency[J]. Plant Physiology, 2008, 147: 1181-1191.[3]赵婧, 邱强, 张鸣浩, 等. 植物体内磷铁平衡与缺铁胁迫的关系研究进展[J]. 作物研究, 2016, 30(3): 343-346. (Zhao J, Qiu Q, Zhang M H, et al. Research progress on the relationship between P-Fe balance and Fe deficiency stress[J]. Crop Research, 2016, 30(3): 343-346.)[4]Ivanov R, Brumbarova T, Bauer P.Fitting into the harsh reality: Regulation of iron-deficiency responses in dicotyledonous plants [J].Molecular Plant, 2012, 5(1) : 27-42.[5]Briat J, Dubos C, Gaymard F. Iron nutrition, biomass production, and plant product quality [J]. Trends Plant Science, 2015, 20(1) :33-40.[6]高丽, 史衍玺, 周健民. 不同耐低铁基因型花生铁营养特性的差异[J].土壤通报, 2009, 40(6) : 1393-1397. (Gao L, Shi Y X, Zhou J M. Genetic differences in iron nutrient characteristic of different peanut cultivars with resistance to iron deficiency[J].Chinese Journal of Soil Science, 2009, 40(6) : 1393-1397.)[7]丁红, 宋文武, 张智猛. 花生铁营养研究进展[J].花生学报, 2011, 40(1): 39-43. (Ding H, Song W W, Zhang Z M. Recent advances in research on iron nutrition of peanut[J]. Journal of Peanut Science, 2011, 40(1): 39-43.)[8]张伟, 赵丽梅, 韩喜国, 等. 吉林省白城地区大豆黄叶原因分析[J].河南农业科学, 2011, 40(11): 57- 60. (Zhang W, Zhao L M, Han X G, et al. Analysis of etiolated soybean leaves in Baicheng region of Jilin province[J]. Journal of Henan Agricultural Sciences, 2011, 40(11) : 57- 60.)[9]张辉, 朱德进, 黄卉, 等. 不同施肥处理对油菜产量及品质的影响[J]. 土壤, 2012, 44(6): 966-971. (Zhang H, Zhu D J, Huang H, et al. Effects of different fertilizer treatments on yield and quality of rapeseed (Brassica napus L.)[J]. Soil, 2012, 44(6): 966-971.)[10]黄洁雪, 闫明科, 薛彩雯, 等.外界铁浓度调控缺磷植物铁吸收相关基因的表达量[J]. 土壤, 2018, 50(5): 866-873. (Huang J X, Yan M K, Xue C W, et al. Phosphate deficiency induced down-regulation of iron acquisition genes is dependent on ambient iron concentration[J]. Soil, 2018, 50(5): 866-873.)[11]Hirsch J, Marin E, Floriani M, et al. Phosphate deficiency promotes modification of iron distribution in Arabidopsis plants[J].Biochimie, 2006, 88: 1767-1771.[12]Zohlen A. Chlorosis in wild plants: Is it a sign of iron deficiency[J]. Journal of Plant Nutrition, 2002, 25: 2205-2228.[13]Sánchez-Calderón L, López-Bucio J, Chacón-López A, et al. Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana[J]. Plant Cell Physiology, 2005, 46: 174-184.[14]Zad E H, Arahou M, Diem H G, et al. Is Fe deficiency rather than P deficiency the cause of cluster root formation in Casuarina species?[J]. Plant and Soil, 2003, 248(1-2):229-235.[15]龙文靖, 万年鑫, 辜涛, 等. 玉米苗期耐低铁能力的综合评价及其预测[J]. 植物遗传资源学报, 2015, 16(4): 734-742. (Long W J, Wan N X, Gu T, et al. Comprehensive evaluation and forecast of low iron tolerant ability in maize seeding stage[J]. Journal of Plant Genetic Resources, 2015, 16(4) : 734-742.)[16]夏友霖, 廖伯寿, 毛金雄, 等. 四川丘陵紫色土花生品种耐缺铁性鉴定与评价[J]. 中国油料作物学报, 2013, 35(3): 326-330. (Xia Y L, Liao B S, Mao J X, et al. Evaluation of lime induced iron-deficiency chlorosis tolerance of peanut on calcareous and purplish soil in Sichuan[J]. Chinese Journal of Oil Crop Sciences, 2013, 35(3) : 326-330.)[17]赵婧, 邱强, 张鸣浩, 等. 大豆在不同铁水平下生理特性与品种耐性的关系[J]. 核农学报, 2016, 30(11): 2239-2247. (Zhao J, Qiu Q, Zhang M H, et al. Relationship between physiological traits and tolerance of soybean under different iron levels[J]. Journal of Nuclear Agricultural Sciences, 2016, 30(11):2239-2247.)[18]傅友强, 杨旭建, 吴道铭, 等. 磷素对水稻根表红棕色铁膜的影响及营养效应[J]. 中国农业科学, 2014, 47(6): 1072-1085. (Fu Y Q, Yang X J, Wu D M, et al. Effect of phosphorus on reddish brown iron plaque on root surface of rice seedlings and their nutritional effects[J]. Scientia Agricultura Sinica, 2014, 47(6) : 1072- 1085.)[19]龙文靖, 辜涛, 万年鑫, 等. 低铁胁迫对玉米苗期根系生长和铁素吸收利用的影响[J]. 中国生态农业学报, 2017, 25(8):1163-1172. (Long W J, Gu T, Wan N X, et al. Comprehensive evaluation and forecast of low iron tolerant ability in maize seeding stage[J]. Journal of Plant Genetic Resources, 2015, 16(4): 734-742.)[20]Shah S R U, Agback P, Lundquist P O. Root morphology and cluster root formation by seabuckthorn (Hippopha rhamnoides L.) in response to nitrogen, phosphorus and iron deficiency[J]. Plant & Soil, 2015, 397(1-2):75-91.[21]Rengel Z, Marschner P. Nutrient availability and management in the rhizosphere: Exploiting genotypic differences[J]. New Phytologist, 2005, 168(2):305-312.[22]张伟, 赵丽梅, 韩喜国, 等. 石灰性土壤大豆缺铁矫正[J]. 大豆科学, 2011, 30(3): 463-467. (Zhang W, Zhao L M, Han X G, et al. Remediation iron deficiency of soybean grown in lime soil[J]. Soybean Research, 2011, 30(3):463-467.)[23]卜玉山, 梁美英, 张广峰, 等. 不同石灰性土壤磷素形态及其有效性差异[J]. 山西农业大学学报(自然科学版), 2011, 31(3): 193-199. (Bu Y S, Liang M Y, Zhang G F, et al. Difference of phosphorus fractions and availability of different calcareous soils[J]. Journal of Shanxi Agricultural University (Natural Science Edition) , 2011, 31(3): 193-199.)[24]Rothstein S J. Returning to our roots: Mating plant biology research relevant to future challenges in agriculture [J]. The Plant Cell, 2007, 19: 2695-2699.[25]孟强, 姜奇彦, 牛风娟, 等. 盐胁迫下不同抗性野生大豆(Glycine soja)生理生化性状比较分析[J].中国农业科技导报, 2017, 19(8): 25-32.(Meng Q, Jiang Q Y, Niu F J, et al. Comparative analysis of physiological and biochemical characters of Glycine soja under NaCl stress[J]. Journal of Agricultural Science and Technology, 2017, 19(8): 25-32.)[26]张雷昌, 汤利, 郑毅. 根系互作对玉米大豆间作作物磷吸收的影响[J]. 植物营养与肥料学报, 2015, 21(5): 1142-1149. (Zhang L C, Tang L, Zheng Y. Phosphorus aborption of crops affected by root interaction in maize and soybean intercropping system[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(5):1142-1149.)[27]郑亚萍, 陈殿绪, 信彩云, 等. 施磷水平对花生叶源生理特性的影响[J]. 核农学报, 2014, 28: 727-731. (Zheng Y P, Chen D X, Xin C Y, et al. Effects of phosphorus application rate on physiology parameters of leaf source in peanut[J]. Journal of Nuclear Agricultural Sciences, 2014, 28: 727-731.)[28]姚玉波, 吴冬婷, 龚振平, 等. 磷素水平对大豆氮素积累及产量的影响[J]. 核农学报, 2012, 26: 947-951. (Yao Y B, Wu D T, Gong Z P, et al. Effect of phosphorus level on nitrogen accumulation and yield in soybean[J]. Journal of Nuclear Agricultural Sciences, 2012, 26: 947-951.)[29]章爱群, 斯琴朝克图, 刘牛, 等. 低铁胁迫对不同耐低磷玉米生长及磷、铁养分吸收的影响[J]. 作物杂志, 2014(6): 111-115. (Zhang A Q, Siqinchaoketu, Liu N, et al. Effects of Fe-deficiency on plant growth and uptake of P and Fe in different P-genotype maize[J]. Crops, 2014(6):111-115.)[30]陈远学, 周涛, 黄蔚, 等. 小麦/玉米/大豆间套作体系中小麦施磷后效对大豆产量、营养状况的影响[J]. 植物营养与肥料学报, 2013, 19(2) : 331-339. (Chen Y X, Zhou T, Huang W, et al. Phosphorous after effects on soybean yield and nutrition status in wheat/maize/soybean intercropping system [J]. Plant Nutrition and Fertilizer Science, 2013, 19(2): 331-339.)[31]李志伟, 刘建玲, 廖文华, 等. 过量供磷对花生生长和吸收铁的影响[J]. 华北农学报, 2013, 28(2): 197-201. (Li Z W, Liu J L, Liao W H, et al. Effects of high concentration of phosphate on the peanut’s yield and Fe uptake [J]. Acta Agriculture Boreali-Sinca, 2013, 28(2) : 197-201.)[32]Carlos L, Rafael P, Francisco R, et al. Similarities and differences in the acquisition of Fe and P by dicot plants [J]. Agronomy, 2018, 8: 148-163.[33]Richardson A E, Lynch J P, Ryan P R,et al. Plant and microbial strategies to improve the phosphorus efficiency of agriculture[J]. Plant and Soil, 2011, 349: 121-156.[34]Rose T J, Pariasca-Tanaka J, Rose M T, et al. Genotypic variation in grain phosphorus concentration, and opportunities to improve P-use efficiency in rice[J]. Field Crops Research, 2010, 119: 154-160.[35]Sánchez-Rodriguez A R, del Campillo M C, Torrent J. Phosphate aggravates iron chlorosis in carbonate iron oxide systems[J]. Plant Soil, 2013, 373: 31-42. [36]Sánchez-Rodriguez A R, del Campillo M C, Torrent J. The severity of iron chlorosis in sensitive plants is related to soil phosphorus levels[J]. Journal of the Science of Food and Agriculture, 2014, 94: 2766-2773. [37]Romera F J, Alcantara E, de la Guardia M D. Effects of bicarbonate, phosphate and high pH on the reducing capacity of Fe-deficient sunflower and cucumber plants[J]. Journal of Plant Nutrition, 1992, 15: 1519-1530.

Memo

Memo:
-
Last Update: 2021-07-20