|Table of Contents|

Molecular Marker Screening and Resistance Identification of Soybean Germplasem to SMV Strain SC3

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2021年01期
Page:
1-10
Research Field:
Publishing date:

Info

Title:
Molecular Marker Screening and Resistance Identification of Soybean Germplasem to SMV Strain SC3
Author(s):
CAI Han ZHAO Lin SHEN Ying CHEN Yuan-yuan ZHI Hai-jian LI Kai
(1.Soybean Research Institute of Nanjing Agricultural University/National Center for Soybean Improvement/Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture/State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing 210095, China;2.Institute of Crops and Ecology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China)
Keywords:
Soybean mosaic virus Molecular markers SSR CH0211 Resistance identification Coincidence rate of disease resistance phenotypic
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2021.01.0001
Abstract:
To further search for molecular markers closely linked to the resistance genes (Rsc3) of soybean mosaic virus (SMV) prevalent strain SC3, providing an accurate and rapid method for breeding resistant cultivars and promoting the SMV resistance genes mining. In the present study, 30 SSR markers newly designed near the SMV resistance site and 50 SSR markers known to be linked to Rsc3 were preliminary screened via 96 soybean cultivars(lines), and the resistance of288 newly bred soybean varieties(lines) from 2016 to 2019 in China were identified combining with genotype, phenotype and serological identification. The result showed that, one newly developed SSR marker CH0211 was initially screened, and the coincidence rate with the resistance phenotypic selection of soybean varieties was 87.8%. Then, 288 soybean cultivars(lines) were further detected and analyzed by using this marker. With the combination of artificial inoculation phenotype and serological identification, the coincidence rate of disease resistance phenotype and genotype was 80.56%. In this study, 158 soybean cultivars with disease resistance to SC3 were identified from 288 soybean cultivars(lines), accounting for 54.86% of the total tested materials, and the molecular bands of 144 soybean cultivars(lines) were identified that were consistent with the type of disease-resistant cultivars(lines). Totally the phenotypes of 116 cultivars(lines) were consistent with the resistance molecular bands, including PI96983, Qihuang 34, Fendou 104, and Shanning 28. All in all, we developed and identified a molecular marker CH0211 closely linked to Rsc3. This marker can be effectively used in germplasm selection of soybean cultivars resistant to SMV SC3 and accelerate the breeding process of soybean resistance to SMV.

References:

[1]王娟,刘淼,王志坤,等.大豆抗病、虫转基因研究进展[J]. 大豆科学,2011,30(5):865-868,873. (Wang J, Liu M, Wang Z K, et al. Advances in transgenic soybean resistant to disease and pest[J]. Soybean Science, 2011, 30(5): 865-868, 873.)

[2] 王连铮,王金陵.大豆遗传育种学[M].北京:科学出版社, 1992. (Wang L Z, Wang J L. Soybean genetic breeding[M]. Beijing: Science Press, 1992.)
[3] 王修强, 盖钧镒, 濮祖芹,等. 黄淮和长江中下游地区大豆花叶病毒株系鉴定与分布[J].大豆科学,2003,22(2): 102-107.(Wang X Q,Gai J Y,Pu Z Q, et al. Classification and distribution of strain groups of soybean mosaic virus in middle and lower HuangHuai and Changjiang valleys[J].Soybean Science, 2003, 22 (2): 102-107.)
[4] 王延伟, 智海剑, 郭东全,等. 中国北方春大豆区大豆花叶病毒株系的鉴定与分布[J]. 大豆科学, 2005, 24 (4): 263-268.(Wang Y W,Zhi H J,Guo D Q,et al. Classification and distribution of strain groups of soybean mosaic virus in northern China spring planting soybean region [J]. Soybean Science,2005, 24 (4): 263-268.)
[5] Guo D Q,Zhi H J,Wang Y W,et al. Identification and distribution of soybean mosaic virus strains in Middle and Northern Huang Huai Region of China[J]. Chinese Journal of Oil Crop Sciences,2005, 27(2): 64-68.
[6] 战勇. 黄淮地区大豆花叶病毒的生物学检测、株系鉴定及大豆抗性的遗传与基因定位[D]. 南京: 南京农业大学, 2003. (Zhan Y. Biological detection and strain identification of soybean mosaic virus as well as mapping resistance gene of soybeans in Huang-Huai region[D]. Nanjing: Nanjing Agricultural University,2003.)
[7] Li K, Yang Q H, Zhi H J, et al. Identification and distribution of soybean mosaic virus strains in southern China[J]. Plant Disease,2010,94(3): 351-357.
[8] 王大刚,田震,李凯,等. 鲁豫皖大豆产区大豆花叶病毒株系的鉴定及动态变化分析[J]. 大豆科学,2013, 32(6):806-809.(Wang D G, Tian Z, Li K, et al. Identification and variation analysis of soybean mosaic virus strains in Shandong,Henan and Anhui Provinces of China[J]. Soybean Science, 2013, 32(6):806-809.)
[9] 王大刚, 陈圣男, 黄志平, 等. 皖豆33对SMV株系SC3的抗性遗传分析及分子标记定位[J]. 中国油料作物学报, 2019, 41(4): 531-536. (Wang D G, Chen S N, Huang Z P, et al. Inheritance and gene mapping of resistance to soybean mosaic virus strain SC3 in soybean cultivar Wandou 33[J]. Chinese Journal of Oil Crop Sciences, 2019, 41(4):531-536.)
[10] Yang Y Q, Zheng G J, Lu H, et al. Genetic analysis and mapping of genes for resistance to multiple strains of soybean mosaic virus in a single resistant soybean accession PI96983[J].Theoretical and Applied Genetics, 2013, 126: 1783-1791.
[11] Fu S X, Zhan Y, Zhi H J, et al. Mapping of SMV resistance geneRsc-7 by SSR markers in soybean[J]. Genetica, 2006, 128(1-3): 63-69.
[12] Li H C, Zhi H J, Gai J Y, et al. Inheritance and gene mapping of resistance to soybean mosaic virus strain SC14 in soybean[J].Journal of Integrative Plant Biology, 2006, 48(12): 1466-1472.
[13] Ma Y, Li H C, Wang D G, et al. Molecular mapping and marker assisted selection of soybean mosaic virus resistance geneRSC12 in soybean[J]. Legume Genomics and Genetics, 2010, 1(8): 41-46.
[14] Ma Y, Wang D G, Li H C, et al. Fine mapping of theRSC14Q locus for resistance to soybean mosaic virus in soybean[J]. Euphytica, 2011, 181(1): 127-135.
[15] Wang D G, Ma Y, Yang Y Q, et al. Fine mapping and analyses ofRSC8 resistance candidate genes to soybean mosaic virus in soybean[J]. Theoretical and Applied Genetics, 2011, 122(3): 555-565.
[16] Ren R, Liu S C, Adhimoolam K, et al. Fine-mapping and identification of a novel locusRsc15 underlying soybean resistance to soybean mosaic virus[J]. Theoretical and Applied Genetics, 2017, 130(11): 2395-2410.
[17] Adhimoolam K, Li K, Li C, et al. Fine-mapping and identifying candidate genes conferring resistance to soybean mosaic virus strain SC20 in soybean[J].Theoretical and Applied Genetics, 2018, 131(2): 461-476.
[18] 夏兰芹, 郭三堆, 蒋尤泉.分子标记技术及其在苜蓿遗传育种研究中的作用[J]. 中国草地,2000(3):66-69. (Xia L Q, Guo S D, Jiang Y Q. Molecular marking technique and its application to alfalfa genetics and breeding[J]. Grassland of China, 2000(3):66-69.)
[19] 王才林, 张亚东, 朱镇, 等. 通过分子标记辅助选择培育优良食味水稻新品种南粳46[J]. 分子植物育种, 2009, 7(6): 1070-1076. (Wang C L, Zhang Y D, Zhu Z, et al. Development of a new japonica rice variety Nanjing 46 with good eating quality by marker assisted selection[J]. Molecular Plant Breeding, 2009, 7(6): 1070-1076.)
[20] 王岩, 付新民, 高冠军, 等. 分子标记辅助选择改良优质水稻恢复系明恢63的稻米品质[J]. 分子植物育种, 2009, 7(4): 661-665. (Wang Y, Fu X M, Gao G J, et al. Improving the grain quality of Minghui 63, a restorer line of rice, with good quality through marker-assisted selection[J]. Molecular Plant Breeding, 2009, 7(4): 661-665.)
[21] 沈雨民, 陈明亮, 熊焕金, 等. 优质抗稻瘟病水稻三系不育系“赣莲A”的选育[J]. 分子植物育种, 2018, 16(3): 924-930. (Shen Y M, Chen M L, Xiong H J, et al, Breeding of CMS line "Ganlian A" with good quality and blast resistance in rice[J]. Molecular Plant Breeding, 2018, 16(3):924-930.)
[22] 张海平, 王志, 李原萍, 等. 灰皮支黑豆抗大豆胞囊线虫4号生理小种的生化机制研究[J]. 大豆科学, 2012, 31(5):796-800.(Zhang H P, Wang Z, Li Y P, et al. Biochemical mechanism of Huipizhi Heidou resistant to race 4 of soybean cyst nematode[J]. Soybean Science,2012, 31(5):796-800.)
[23] 滕卫丽, 李文滨, 韩英鹏,等. 大豆种质对SMV抗性鉴定的SSR辅助选择[J]. 中国油料作物学报, 2008, 30(2):224-228. (Teng W L, Li W B, Han Y P, et al. Identification of the SMV resistance assessment and assisted selection SSR markers in soybean[J]. Chinese Journal of Oil Crop Sciences, 2008, 30(2):224-228.)
[24] 滕卫丽, 李文滨, 韩英鹏,等. 大豆SMV3号株系抗病基因的SSR标记[J].大豆科学,2006,25(3):244-249. (Teng W L, Li W B, Han Y P, et al. SSR markers of disease resistance genes in soybean SMV3 strain[J]. Soybean Science, 2006,25(3):244-249.)
[25] 滕卫丽. 大豆抗花叶病遗传、细胞超微结构分析及基因定位[D]. 哈尔滨:东北农业大学, 2006. (Teng W L. Inheritance of resistance to SMV, cellular ultrastructure analysis and resistance gene mapping soybean[D]. Harbin:Northeast Agricultural University, 2006.)
[26] 韩英鹏, 程章, 赵雪,等. 大豆花叶病毒病和疫霉根腐病抗性的SSR标记辅助鉴定[J]. 大豆科学, 2013,32(6):740-743. (Han Y P, Cheng Z, Zhao X,et al. SSR Identification of soybean line with resistance to both soybean mosaic virus and phytophthpra root rot[J]. Soybean Science, 2013,32(6):740-743.)
[27] 李文福, 朱晓双, 王晓锋,等. 大豆种质对SMV成株和种粒斑驳抗性的SSR标记辅助鉴定[J]. 植物遗传资源学报, 2010, 11(2):239-243. (Li W F, Zhu X S, Wang X F, et al. Identification of the SMV adult-plant and seed coat mottling resistance in soybean germplasms using SSR markers[J]. Journal of Plant Genetic Resources, 2010, 11(2):239-243.)
[28] 栾晓燕, 李宗飞, 满为群,等. 与大豆SMV3号株系抗性相关的分子标记的鉴定[J]. 分子植物育种, 2006(6):841-845. (Luan X Y, Li Z F , Man W Q , et al. Identification of molecular markers linked to resistance for SMV3 in soybean[J]. Molecular Plant Breeding, 2006, 4(6):841-845.)
[29] 李扬眉. 我国抗大豆花叶病毒SC3相关QTL的分子标记研究进展[J]. 大豆科技, 2016(3):21-24. (Li Y M. Research progress on QTLs relevant to soybean mosaic virus strain SC3[J]. Soybean Science & Technology, 2016.)
[30] Ma Y. Molecular mapping and marker assisted selection of soybean mosaic virus resistance gene RSC12 in soybean[J].Legume Genomics and Genetics, 2010, 1(8): 1-6.
[31] 王传之, 李志, 王敏, 等. 利用 MAS 进行大豆花叶病毒 SC7抗性鉴定及分子育种初探[J]. 大豆科技,2019(5):10-14.(Wang C Z, Li Z, Wang M, et al. Preliminary study on resistance identification and molecular breeding to soybean mosaic virus SC7 by MAS[J]. Soybean Science & Technology, 2019(5):10-14.)
[32] 王大刚, 陈圣男, 黄志平, 等. 193 份大豆品系对SMV抗性鉴定与分子标记检测[J].分子植物育种,2019, 17(24): 8138-8151.(Wang D G, Chen S N, Huang Z P, et al. Identification and molecular detection of soybean mosaic virus resistance of 193 soybean lines[J]. Molecular Plant Breeding, 2019, 17(24):8138-8151.)
[33] Gao L, Ding X N, Li K, et al. Characterization of soybean mosaic virus resistance derived from inverted repeat-SMV-HC-Pro genes in multiple soybean cultivars[J]. Theoretical and Applied Genetics, 2015, 128 (8):1489-1505.
[34] 李凯, 夏迎春, 王大刚,等. 黑龙江省大豆花叶病毒(SMV)株系的动态变化分析[J].大豆科学, 2014, 33(6): 880-884. (Li K, Xia Y C, Wang D G, et al. Analysis of dynamic change of soybean mosaic virus strains in Heilongjiang Province of China[J]. Soybean Science, 2014, 33(6):880-884.)
[35] Che Z J, Yan H L, Liu H L, et al. Genome-wide association study for soybean mosaic virus SC3 resistance in soybean[J]. Molecular Breeding, 2020, 40(7): 459-479.
[36] Liu S M, Kandoth P K, Warren S D E, et al.A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens[J].Nature, 2012, 492(7428): 256-260.
[37] Cregan P B, Mudge J, Fickus E W, et al.Two simple sequence repeat markers to select for soybean cyst nematode resistance con- ditioned by the rhg1 locus[J].Theoretical & Applied Genetics, 1999, 99: 811-818.
[38] 王文辉, 邱丽娟, 常汝镇, 等. 中国大豆种质抗SCN 基因rhg1位点SSR标记等位变异特点分析[J]. 大豆科学, 2003, 22(4): 246-250.( Wang W H, Qiu L J, Chang R Z, et al. Characteristics of alleles at Satt309 locus associated withrhg1gene resistant to SCN of chinese soybean germplasm[J]. Soybean Science, 2003, 22(4): 246-250.)

Memo

Memo:
-
Last Update: 2021-02-09