|Table of Contents|

Study on High Efficient Fertilization Methods of Coupling Effect of Rhizobium and Nitrogen Fertilizer in Wind Sand and Semi-arid Area of Heilongjiang Province(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2020年06期
Page:
912-918
Research Field:
Publishing date:

Info

Title:
Study on High Efficient Fertilization Methods of Coupling Effect of Rhizobium and Nitrogen Fertilizer in Wind Sand and Semi-arid Area of Heilongjiang Province
Author(s):
ZHOU Chang-jun CHEN Jing-sheng TIAN Zhong-yan LI Jian-ying WU Yao-kun YU Ji-dong MA LanLI Ze-yu
(Daqing Branch,Heilongjiang Academy of Agricultrual Science, Daqing 163316, China)
Keywords:
Soybean Aeolian semi-arid area Rhizobium Efficient fertilization Coupling effect Economic benefit
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2020.06.0912
Abstract:
In order to explore the coupling effect of Rhizobium and nitrogen fertilizer on the biological growth of soybean plants in the wind sand and semi-arid region of the western Heilongjiang Province, and to explore the reasonable and efficient fertilization methods in this area. In this study, five different fertilization methods were set up in 2018 and 2019. T1: No nitrogenous fertilizer, T2: Conventional fertilization, T3: Conventional fertilization + Urea topdressing at flowering,T4: Conventionalfertilization + Rhizobium seed dressing + Urea topdressing in flowering period, T5: Conventional fertilization + Rhizobium seed dressing + Controlled-release urea at flowering stage. The effects of different fertilization treatments on plant biomass, yield, yield components and economic benefits of soybean were analyzed. The results showed that the coupling effect of rhizobia and nitrogen fertilizer significantly increased the dry weight on the ground, dry weight under the ground, dry weight of rhizobia, the number of rhizobia in soybean flowering stage, the seed weight per plant and the100-seedweight. The soybean plant dry weight on the ground and dry weight under the ground of the T4 treatment were the highest in the two-year experiment. The dry weight of rhizobia in soybean flowering stage of T5 treatment was the highest in 2018, and this character of T4 treatment was the highest in 2019. The rhizobia number of T5 treatment was the highest in the two-year investigation. The seed weight per plant, the 100-seed weight and the soybean yield of T4 treatment was the highest in the two-year investigation. In 2018, the soybean yield of T4 treatment was2 686.4kg?ha-1, 6.10% and 10.31% higher than T3 and T2 treatments, respectively. In 2019, the soybean yield of T4 treatment was2 798.8kg?ha-1, 10.4% and 16.0% higher than T3 and T2 treatment respectively. The output value of T3, T4 and T5 were higher than that of T2, among which T4 was the highest, reaching9 599.1yuan?ha-1, with the most increase compared with T2, reaching 611.8yuan?ha-1.Therefore, T4 was the rational way of applying fertilizer in a semi-arid area of the western Heilongjiang Province.

References:

[1]马家斌, 于晓波, 吴海英, 等. 接种根瘤菌对西南地区大豆光合性能和固氮能力的影响[J]. 中国油料作物学报, 2020(3): 1-7. (Ma J B, Yu X B, Wu H Y, et al. Effects of inoculation of different rhizobium on photosynthetic characteristics and nitrogen fixation of soybean[J]. Chinese Journal of Oil Crop Sciences, 2020(3): 1-7.)[2]房春红. 根瘤菌与大豆、土壤间相互适应性研究[D]. 哈尔滨: 东北农业大学, 2007. (Fang C H. Study on the adaptability of rhizobia to soybean and soil [D]. Harbin: Northeast Agricultural University, 2007. )[3]Salvagiotti F, Cassman K G, Specht J E, et al. Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review[J]. Field Crops Research, 2008, 108(1): 1-13. [4]武帆, 李淑敏, 孟令波. 菌根真菌、根瘤菌对大豆/玉米氮素吸收作用的研究[J]. 东北农业大学学报, 2009, 40(6): 6-10.(Wu F, Li S M, Meng L B. Study on the effect of mycorrhizal fungi and rhizobia on nitrogen absorption of soybean/maize[J]. Journal of Northeast Agricultural University, 2009, 40(6): 6-10.)[5]白朴,马建静. 植物泡囊丛枝菌根及其应用展望[J]. 生态农业研究, 2000(3): 24-26. (Bai P, Ma J J.The plant arbuscular mycurrhiza and prospects of its application[J]. Chinese Journal of Eco-Agriculture, 2000(3): 24-26)[6]张小燕. 大豆VA菌根应用研究进展[J]. 安徽农学通报, 2006(10): 65-66. (Zhang X Y. Research progress of VA mycorrhizal application in soybean[J]. Anhui Agricultural Science Bulletin, 2006(10): 65-66.)[7]O’hwaki Y, Sugahara P. Active extrusion of protons and exudation of carboxylic acids in response to iron deficiency by roots of chickpea(Cicer arietinum L.)[J]. Plant Soil, 1997, 189: 49-55.[8]董钻. 大豆产量生理[M]. 北京: 中国农业出版社, 2000. (Dong Z. Physiology of soybean yield[M]. BeiJing: China Agriculture Press, 2000)[9]姬月梅, 赵志刚, 罗瑞萍, 等. 在不同氮素水平下接种根瘤菌对春大豆生长及产量的影响[J].宁夏农林科技, 2016, 57(5): 1-5. (Ji Y M, Zhao Z G, Luo R P, et al. Effects of rhizobium inoculation and nitrogen level on growth and yield of spring soybean[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2016, 57(5): 1-5.)[10]严君, 韩晓增, 王守宇, 等. 不同形态氮对大豆根瘤生长及固氮的影响[J]. 大豆科学, 2009, 28(4): 674-677. (Yan J, Han X Z, Wang S Y, et al. Effect of different forms nitrogen on nodule growth and nitrogen fixation in soybean(Glycine max L.) [J]. Soybean Science, 2009, 28(4): 674-677.)[11]谭娟. 接种俄罗斯大豆根瘤菌对大豆生长和产量的影响[J]. 作物杂志, 2007(4): 36-37. (Tan J. Effect of inoculation of rhizobia on soybean growth and yield[J]. Crops, 2007(4): 36-37.)[12]金晓梅, Синеговская В Т, 赵念力. 根瘤菌、微肥和作物生长调节剂对大豆氮磷钾积累和产量的影响[J]. 大豆科学, 2009, 28(4): 751-754. (Jin X M, Синеговская В Т, Zhao N L. Influence of rhizobium, trace fertiliter and crop growth regulators on nitrogen, phosphorous, potassium accumulation and yield of soybean[J]. Soybean Science, 2009, 28(4): 751-754.)[13]郑浩宇, 黄炳林, 王孟雪, 等. 氮肥减施与接种根瘤菌对大豆光合与产量的影响[J]. 大豆科学, 2019, 38(3): 413-420. (Zheng H Y, Huang B L, Wang M X, et al. The effect of nitrogen fertilizer reduction and rhizobium inoculation on soybean photosynthesis and yield[J]. Soybean Science, 2019, 38(3): 413-420.)[14]申晓慧, 姜成, 张敬涛, 等. 不同施氮量对合农60号大豆产量性状的影响[J]. 农学学报, 2013, 3(6): 17-19. (Shen X H, Jiang C, Zhang J T, et al. The Influences of different nitrogen on the soybean production of Henong 60[J]. Journal of Agriculture, 2013, 3(6): 17-19.)[15]高阳, 傅积海, 章建新, 等.施氮量对高产春大豆光合特性及产量的影响[J]. 中国农学通报, 2020, 36(14): 34-40.(Gao Y, Fu J H, Zhang J X, et al. Effects of nitrogen application on photosynthetic characteristics and yield of high yield spring soybean[J]. Chinese Agricultural Science Bulletin, 2020, 36(14): 34-40.)[16]魏丹, 李艳, 李玉梅, 等. 氮磷钾元素对黑龙江不同地区大豆产量和品质的影响[J]. 大豆科学, 2017, 36(1): 87-91. (Wei D, Li Y, Li Y M, et al. Effect of N, P, K fertilization on yield and quality of soybean in Heilongjiang Province[J]. Soybean Science, 2017, 36(1): 87-91.)[17]曹翠玲, 李生秀. 水分胁迫和氮素有限亏缺对小麦拔节期某此生理特性的影响[J]. 土壤通报, 2003, 34(6): 505-509. (Cao C L, Li S X. Effects of water stress and limited nitrogen deficiency on some physiological characteristics of wheat at jointing stage[J]. Chinese Journal of Soil Science, 2003, 34(6): 505-509.)[18]张秋英, 李发东, 高克昌, 等. 水分胁迫对冬小麦光合特性及产量的影响[J].西北植物学报, 2005, 25(6): 1184-1190. (Zhang Q Y, Li F D, Gao K C, et al. Effect of water stress on the photosynthetic capabilities and yield of winter wheat[J]. Acta Botanica Boreali-Occidentalia Sinica, 2005, 25(6): 1184-1190.)[19]任书杰, 张雷明, 张岁岐, 等. 氮素营养对小麦根冠协调生长的调控[J]. 西北植物学报, 2003(3): 395-400. (Ren S J, Zhang L M, Zhang S Q, et al. The effect of nitrogen nutrition on coordinate growth of root and shoot of winter wheat[J]. Acta Botanica Boreali-Occidentalia Sinica, 2003(3): 395-400.)[20]Thornley J H M. Modeling shoot: Root relations: The only way forward?[J]. Annals of Botany, 1998, 81: 165-171.[21]武维华. 植物生理学[M]. 北京: 科学出版社, 2003. (Wu W H. Plant physiology[M]. Beijing: Science Press, 2003.)[22]Wang Y, Fu D, Pan L L, et al. The coupling effect of water and fertilizer on the growth of tea plants [J]. Journal of Plant Nutrition, 2016, 39(5): 620-627.[23]王绍华, 曹卫星, 丁艳锋, 等. 水氮互作对水稻氮吸收与利用的影响[J]. 中国农业科学, 2004, 37(4): 497-501. (Wang S H, Chao W X, Ding Y F, et al. Interactions of water management and nitrogen fertilizer on nitrogen absorption and utilization in rice[J]. Scinentia Agricultura Sinica, 2004, 37(4): 497-501.)

Memo

Memo:
-
Last Update: 2020-12-25