|Table of Contents|

Effects and Mechanism of Sinorhizobiumfredii S15 in Reducing Cadmium and Lead Uptake of Soybean(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2020年05期
Page:
767-774
Research Field:
Publishing date:

Info

Title:
Effects and Mechanism of Sinorhizobiumfredii S15 in Reducing Cadmium and Lead Uptake of Soybean
Author(s):
ZHANG Jing ZHANG Ya-jian ZHOU Qian-qian SHENG Xia-fang HE Lin-yan
(College of Life Sciences, Nanjing Agricultural University/Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural, Nanjing 210095, China)
Keywords:
Rhizobium Soybean Heavy metals content Antioxidant enzyme
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2020.05.0767
Abstract:
In order to investigate the effect of rhizobia on the reduction of heavy metals in soybeans, a sand culture experiment was used to study the effects and mechanism of Sinorhizobiumfredii S15 on decreasing the uptake of cadmium and lead of soybeans. The results showed that strain S15 significantly reduced Cd (40% and 42%) and Pb (21% and 24%) contents in the roots and shoots of soybean compared with the control. Strain S15 could colonize at the root surface, increased the biomass and reduced the bioconcentration factor of Cd (40%) and Pb (21%) in the roots. Inoculated strain S15 increased soybean phosphorus(12%-24%) and nitrogen content(29%-81%), reduced root MDA content(27% and 19%) of soybeans, increased SOD (69%), POD (29%) and CAT (52%) activities under Cd stress and SOD (62%) activity under Pb stress. It also promoted the transform of the chemical forms of Cd or Pb from stronger migration to the weaker migration, hereby to limit the movement of Cd or Pb in soybeans. In a word, Sinorhizobiumfredii S15 can reduce the uptake of heavy metals in soybeans, and has the potential to ensure the safe production of soybeans.

References:

[1]Wolnik K A, Fricke F L, Capar S G, et al.Elements in major raw agricultural crops in the United States. 1. Cadmium and lead in lettuce, peanuts, potatoes, soybeans, sweet corn, and wheat[J]. Journal of Agricultural and Food Chemistry,1983,31(6): 1240-1244.[2]Bingham F T, Page A L, Mahler R J,et al. Growth and cadmium accumulation of plants grown on a soil treated with a cadmium-enriched sewage sludge[J]. Journal of Environmental Quality, 1975, 4(2):207-211.[3]Zhang Z W, Watanabe T, Shimbo S, et al. Lead and cadmium contents in cereals and pulses in North-eastern China[J]. Science of the Total Environment, 1998, 220(2-3):137-145.[4]Shute T, Macfie S M. Cadmium and zinc accumulation in soybean: A threat to food safety?[J]. Science of the Total Environment,2006,371(1-3):63-73.[5]陈文新, 汪恩涛,陈文峰.根瘤菌-豆科植物共生多样性与地理环境的关系[J].中国农业科学,2004(1):81-86.(Chen W X, Wang E T, Chen W T.The relationship between the symbiotic promiscuity of rhizobia and legumes and their geographical environments[J].China Agricultural Science, 2004(1): 81-86.)[6]Ahmad D, Mehmannavaz R, Damaj M, et al. Isolation and characterization of symbiotic N2-fixing Rhizobium melilotifrom soils contaminated with aromatic and chloroaromatic hydrocarbons: PAHs and PCBs[J]. International Biodeterioration and Biodegradation, 1997, 39(1):33-43.[7]王瑾,王喆之,董忠民.土壤氢氧化细菌促进作物生长机理研究进展[J].应用与环境生物学报,2012,18(5):853-861. (Wang J, Wang Z Z, Dong Z M. Progress in recent on soil hydroxide-oxidizing bacteria associate with legume nodules and rotation benefits[J]. Journal of Applied and Environmental Biology, 2012,18(5): 853-861.)[8]赵叶舟,王浩铭,汪自强.豆科植物和根瘤菌在生态环境中的地位和作用[J]. 农业环境与发展, 2013(4):7-12. (Zhao Y Z, Wang H M, Wang Z Q. The role of leguminous plants and Rhizobium in the ecological environment[J]. Agriculture Environment and Development, 2013(4): 7-12.)[9]Dary M, Chamber-Pérez M A, Palomares A J, et al. “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant growth promoting rhizobacteria[J]. Journal of Hazardous Materials,2010, 177(1-3): 323-330.[10]Fatnassi I C, Chiboub M, Saadani O, et al. Impact of dual inoculation with Rhizobium and PGPR on growth and antioxidant status of Vicia faba L. under copper stress[J]. Comptes Rendus Biologies, 2015, 338(4):241-254.[11]陈雯莉,黄巧云,郭学军.根瘤菌对土壤铜-锌和镉形态分配的影响[J].应用生态学报,2003(8):1278-1282. (Chen W L, Huang Q Y, Guo X J. Effects of Rhizobia on morphological distribution of Cu, Zn and Cd in soil[J]. Journal of Applied Ecology, 2003 (8): 1278-1282.)[12]Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts.[J]. Plant and Cell Physiology, 1981, 22(5): 867-880.[13]Cakmak I,Marschenr H.Magnesium deficiency and high light intensity enhance activity of superoxide dismutase ascobate peroxidase, and glutathione reductase in bean leaves[J]. Plant Physiology,1992, 98: 1222-1227.[14]Hodges D M, Delong J M, Forney C F. Improving the thiobarbituric acid reactive substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds[J]. Planta, 1999, 207: 604-611.[15]Gtz M, Gomes N C M , Dratwinski A, et al. Survival of gfp-tagged antagonistic bacteria in the rhizosphere of tomato plants and their effects on the indigenous bacterial community[J]. FEMS Microbiology Ecology, 2006, 56(2): 207-218.[16]Xu Z H, Zhang R F, Wang D D, et al. Enhanced control of cucumber wilt disease by Bacillus amyloliquefaciens SQR9 by altering the regulation of its DegU phosphorylation[J]. Applied and Environmental Microbiology, 2014, 80(9): 2941-2950.[17]李会娟. 2种植物磷含量的检测方法比较研究[J]. 现代农业科技, 2012(11): 16-17.(Li H J. Comparative study on determination of phosphorus content in two kinds of plants [J]. Modern Agricultural Science and Technology, 2012(11): 16-17.)[18]谢红伟.水杨酸比色法测定水中硝酸盐氮的含量[J]. 贵州农业科学, 1999(3): 41-42.(Xie H W. Determination of nitrogen content in nitrate by salicy acid colorimetry in water[J]. Guizhou Agricultural Sciences, 1999(3): 41-42.)[19]赖金龙,杨垒滟,付倩,等.Sr(2+)在印度芥菜幼苗中的富集-亚细胞分布及贮存形态研究[J].农业环境科学学报,2015,34(11):2055-2062. (Lai J L, Yang L Y, Fu Q, et al. Bioaccumulation, subcellular distribution and chemical forms of strontium in Brassica juncea L.[J]. Journal of Agriculture Environment Science, 2015,34(11): 2055-2062.)[20]张甲耀,李静,夏威林,等.生物修复技术研究进展[J].应用与环境生物学报, 1996, 2(2):193-199. (Zhang J Y, Li J, Xia W L, et al. Bioremediation researches[J]. Journal of Applied and Environmental Biology, 1996, 2(2): 193-199.)[21]徐劼, 于明革, 陈英旭, 等. 铅在茶树体内的分布及化学形态特征[J]. 应用生态学报, 2011, 22(4): 891-896. (Xu J, Yu M G, Chen Y X,et al. Characteristics of distribution and chemical forms of Pb in tea plant varieties[J]. Journal of Applied Ecology, 2011, 22(4): 891-896.)[22]Chen L, He L Y, Wang Q, et al. Synergistic effects of plant growth-promoting Neorhizobiumhuautlense T1-17 and immobilizers on the growth and heavy metal accumulation of edible tissues of hot pepper[J]. Journal of Hazardous Materials, 2016, 312:123-131. [23]Grandlic C J, Mendez M O, Jon C, et al. Plant growth-promoting bacteria for phytostabilization of mine tailings[J]. Environmental Science and Technology, 2008,42(6):2079-2084.[24]Egamberdieva D. Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat[J]. Acta Physiologiae Plantarum, 2009, 31: 861-864.[25]Burd G I, Dixon D G, Glick B R. Plant growth-promoting bacteria that decrease heavy metal toxicity in plants[J]. Canadian Journal of Microbiology, 2000, 46: 237-245.[26]Treesubsuntorn C, Dhurakit P, Khaksar G, et al. Effect of microorganisms on reducing cadmium uptake and toxicity in rice (oryza sativa L.)[J]. Environmental Science and Pollution Research, 2018, 25(26): 25690-25701.[27]Madhaiyan M, Poonguzhali S, Sa T. Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (lycopersicon esculentum L.)[J]. Chemosphere, 2007, 69(2): 220-228.[28]María C, Romero-Puertas, Corpas F J, et al. Differential expression and regulation of antioxidative enzymes by cadmium in pea plants[J]. Journal of Plant Physiology, 2007, 164(10): 1346-1357.[29]Hérouart D, Van Montagu M, Inzé D. Redox-activated expression of the cytosolic copper/zinc superoxide dismutase gene in Nicotiana[J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(7): 3108-3112.[30]Bilal S, Shahzad R, Khan AL, et al. Phytohormones enabled endophytic Penicillium funiculosum LHL06 protects Glycine max L. from synergistic toxicity of heavy metals by hormonal and stress-responsive proteins modulation[J].Journal of Hazardous Materials,2019,379: 120824.[31]谭佳缘,孙蔓蔓,夏师慧,等.重金属胁迫和内生菌对植物氮代谢影响的研究进展[J].新农业,2019(17):7-10.(Tan J Y, Sun M M, Xia S H, et al. Research progress on the effects of heavy metal stress and endophytic bacteria on plant nitrogen metabolism[J]. New Agriculture, 2019(17): 7-10.)[32]Hurek T, Reinhold-Hurek B. Azoarcus sp. strain BH72 as a model for nitrogen-fixing grass endophytes[J]. Journal of Biotechnology, 2003, 106(2-3): 169-178. [33]郎宸用. 植物内生菌提取物对玉米生长特性及产量的影响[J].江苏农业科学,2018,46(20):62-65.(Lang C Y. Effects of plant endophytic bacteria extracts on growth and yield of corn[J]. Jiangsu Agricultural Science, 2018,46(20): 62-65.)[34]黄运湘. 镉对大豆的毒害效应及不同大豆品种耐镉差异性研究[D].长沙:湖南农业大学,2006.(Huang Y X. Toxic effects of cadmium on Glycine max plants and differences of cadmium tolerance of various Glycine max varieties[D]. Changsha:Hunan Agricultural University, 2006.)

Memo

Memo:
-
Last Update: 2020-10-21