|Table of Contents|

Meta-QTL and Overview Analysis of Potential Genes Resistant to Cyst Nematode in Soybean(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2020年05期
Page:
720-726
Research Field:
Publishing date:

Info

Title:
Meta-QTL and Overview Analysis of Potential Genes Resistant to Cyst Nematode in Soybean
Author(s):
WANG JunJIANG Hai-pengZHAO XueHAN Ying-peng
(Soybean Research Insititute, Northeast Agricultural University, Harbin 150030, China)
Keywords:
Soybean cyst nematode Meta-analysis Overview Resistance site Candidate gene
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2020.05.0720
Abstract:
In order to integrate and analyze hundreds of QTLs resistant to soybean cyst nematode(SCN) diseases found in different soybean genetic populations, to further explore the potential genes of soybean cyst nematode, we used BioMercator 4.2 software to integrate QTLs with different genetic backgrounds and project these QTL into soybean public genetic maps, and then, obtained consistent resistance QTLs through meta-analysis. In the same time we carried on Overview analysis. Finally, 12 resistance candidate QTLs were distributed on Chr 8, 15, 16, 18 and 20 through meta-analysis, 19 QTLs were located on Chr 3, 6, 8, 11, 12, 15, 16, 18 and 20 through Overview analysis. A total of 13 resistance genes were found in 5 overlapping QTLs through overlapping interval of the two methods, which covered 6 LRR type, 2 LRR-TM type, and 5 TIR-NBS-LRR type resistances disease genes. The QTL meta-analysis and Overview analysis method could provide more accurate genomic information for fine mapping, providing reliable gene resources for molecular assisted breeding of soybean resistant to cyst nematode.

References:

[1]Wrather J A, Koenning S R. Estimates of disease effects on soybean yields in the United States 2003 to 2005[J]. Journal of Nematology, 2006, 38(2): 173-180.[2]段玉玺. 植物线虫学[M]. 北京: 科学出版社, 2011. (Duan Y C. Plant nematology[M]. Beijing: Science Press, 2011.)[3]孙漫红, 刘杏忠, 缪作清. 大豆胞囊线虫病生物防治研究进展[J]. 中国生物防治, 2000(3): 136-141. (Sun M H, Liu X Z, Liao Z Q. Biological control of soybean cyst nematode[J]. Chinese Journal of Biological Control, 2000(3): 136-141.)[4]Soybean disease loss estimates for the top ten soybean-producing counries in 1998[J]. Canadian Journal of Plant Pathology, 2001, 23(2): 115-121. [5]Matsye P D, Lawrence G W, Youssef R M, et al. The expression of a naturally occurring, truncated allele of an α-SNAP gene suppresses plant parasitic nematode infection[J]. Plant Molecular Biology, 2012, 80(2): 131-155. [6]Riggs R D, Schmitt D P. Complete characterization of the race scheme for Heterodera glycines[J]. Journal of Nematology, 1988, 20(3): 392-395. [7]Niblack T L, Arelli P R, Noel G R, et al. A revised classification scheme for genetically diverse populations of Heterodera glycines[J]. Journal of Nematology, 2003, 34(4): 279-288.[8]董丽民, 许艳丽, 李春杰. 黑龙江省大豆胞囊线虫胞囊密度和生理小种鉴定[J]. 中国油料作物学报, 2008(1): 108-111. (Dong L M, Xu Y L, Li C J. Cystdensity and subspeicies identification of soybean cystnematode in Heilongjiang province[J]. Chinese Journal of Oil Crop Sciences, 2008(1): 108-111.)[9]孔祥超, 李红梅, 耿甜. 大豆种质资源对大豆孢囊线虫3号和4号生理小种的抗性鉴定[J].植物保护, 2012, 38(1): 146-150. (Kong X C, Li H M, Geng T. Resistance evaluayion of soybean varieties and germpasms to the races No.3 and No.4 of soybean cyst nematode Heterodera glycines[J]. Plant Protection, 2012, 38(1): 146-150.[10]Weisemann J M, Matthews B F, Devine T E. Molecular markers located proximal to the soybean cyst nematode resistance gene, Rhg4[J]. Theoretical and Applied Genetics, 1992, 85(2): 136-138. [11]Concibido V C, Diers B W, Arelli P R. A decade of QTL mapping for cyst nematode resistance in soybean[J]. Crop Science, 2004, 44(4): 1121-1131.[12]Goffinet B. Quantitative trait loci: A meta-analysis[J]. Genetics, 2000, 155(1): 463-473. [13]Kyujung V, Leah M H. Meta-Analyses of QTLs associated with protein and oil contents and compositions in soybean [Glycine max(L.) Merr.] seed[J]. International Journal of Molecular Sciences, 2017, 18(6): 1180.[14]刘硕, 郭勇, 罗玲, 等. 大豆倒伏性相关QTL的整合及Overview分析[J]. 植物遗传资源学报, 2014, 15(1): 137-143. (Liu S, Guo Y, Luo L, et al. Integration and Overview analysis of QTLs related to lodging in soybean(Glycine max)[J]. Journal of Plant Genetic Resources, 2014, 15(1): 137-143.)[15]高利芳, 郭勇, 郝再彬, 等. 大豆株高QTL的“整合”及Overview分析[J]. 遗传, 2013, 35(2): 215-224. (Gao L F, Guo Y, Hao Z B, et al. Integration and ‘Overview’ analysis of QTLs related to plant height in soybean[J]. Hereditas, 2013, 35(2): 215-224.)[16]Darvasi A, Soller M. A simple method to calculate resolving power and confidence interval of QTL map location[J]. Behavior Genetics, 1997, 27(2): 125-132. [17]Yue P, Sleper D A, Arelli R R. Mapping resistance to multiple races of in soybean PI 89772[J]. Crop Science, 2001, 41(5): 1589-1595.[18]Glover K D, Wang D, Arelli P R, et al. Near isogenic lines confirm a soybean cyst nematode resistance gene rom PI 88788 on linkage group J [J]. Crop Science, 2004, 12(3): 936-941.[19]Guo B, Sleper D A, Arelli P R, et al. Identification of QTLs associated with resistance to soybean cyst nematode races 2, 3 and 5 in soybean PI 90763[J]. Theoretical and Applied Genetics, 2005, 111(5): 965-971.[20]Liu Y, Chen S, Zhong Y T, et al. Mapping QTL associated with resistance to soybean cyst nematode Race 3 in cultivar Kangxian 2[J]. Soybean Science, 2010, 29(2): 215-217.[21]Guo B, Sleper D A, Nguyen H T, et al. Quantitative trait loci underlying resistance to three soybean cyst nematode populations in soybean PI 404198A[J]. Crop Science, 2006, 46(1): 224-233.[22]Winter S M J, Shelp B J, Anderson T R, et al. QTL associated with horizontal resistance to soybean cyst nematode in Glycine soja PI464925B[J]. Theoretical and Applied Genetics, 2007, 114(3): 461-472.[23]Vuong T D, Sleper D A, Shannon J G, et al. Confirmation of quantitative trait loci for resistance to multiple-HG types of soybean cyst nematode (Heterodera glycines Ichinohe)[J]. Euphytica, 2011, 181(1): 101-113.[24]Kazi S, Shultz J, Afzal J, et al. Iso-lines and inbred-lines confirmed loci that underlie resistance from cultivar ‘Hartwig’ to three soybean cyst nematode populations[J]. Theoretical and Applied Genetics, 2010, 120(3): 633-644.[25]Arriagada O, Mora F, Dellarossa J C, et al. Bayesian mapping of quantitative trait loci (QTL) controlling soybean cyst nematode resistant[J]. Euphytica, 2012, 186(3): 907-917.[26]Song Q J, Marek L F, Shoemaker R C, et al. A new integrated genetic linkage map of the soybean[J]. Theoretical and Applied Genetics, 2004, 109(1): 122-128.[27]常玮, 韩英鹏, 胡海波. 基于元分析与结构域注释的大豆胞囊线虫抗性基因挖掘[J]. 中国农业科学, 2010, 43(23): 4787-4795. (Chang W, Han Y P, Hu H B. Mining candidate genes for resistance to soybean cyst nematode based on Meta-analysis and domains annotations[J]. Scientia Agricultura Sinica, 2010, 43(23): 4787-4795.)[28]秦力. 芦笋雌雄花发育转录组分析及性别决定相关miRNA靶基因的鉴定[D].杭州:浙江大学, 2016. (Qin L. Comparative transcriptome analysis of male female flowers and identification of gender-related miRNA targets in Asparagus officinalis L.[D]. Hangzhou:Zhejiang University, 2016.)[29]Kanazin V, Marek L F, Shoemaker R C. Resistance gene analogs are conserved and clustered in soybean[J]. Proceedings of the National Academy of Sciences of the USA, 1996, 93(21): 11746-11750.[30]Goffinet B. Quantitative trait loci: A meta-analysis[J]. Genetics, 2000, 155(1): 463-473.[31]Meyers B C, Morgante M, Michelmore R W. TIR-X and TIR-NBS proteins: Two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes[J]. The Plant Journal, 2002, 32(1): 77-92.[32]李任建, 申哲源, 李旭凯. 谷子NBS-LRR类基因家族全基因组鉴定及表达分析[J]. 河南农业科学, 2020, 49(2): 34-43. (Li R J, Shen Z Y, Li X K. Genome-Wide identification and expression analysis of NBS-LRR gene family in Setaria italica[J]. Journal of Henan Agricultural Sciences, 2020, 49(2): 34-43.)[33]Rossi M, Araujo P G, Paulet F, et al. Genomic distribution and characterization of EST-derived resistance gene analogs (RGAs) in sugarcane[J]. Molecular Genetics and Genomics, 2003, 269(3): 406-419.[34]李海霞, 张志毅, 张谦. 毛白杨TIR-NBS-LRR基因转化烟草的研究[J]. 北京林业大学学报, 2009, 31(1): 73-78. (Li H X, Zhang Z Y, Zhang Q. Transformation of tobaccos with a TIR-NBS-LRR gene isolated from Populus tomentosa Carr.[J]. Journal of Beijing Forestry University, 2009, 31(1): 73-78.)

Memo

Memo:
-
Last Update: 2020-10-21