|Table of Contents|

Study on the Enhancement of Soybean Resistance to Sclerotinia Sclerotiorum with Transformation of Cmoxdc1 Gene from Coniothyrium Minitans(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2020年05期
Page:
712-719
Research Field:
Publishing date:

Info

Title:
Study on the Enhancement of Soybean Resistance to Sclerotinia Sclerotiorum with Transformation of Cmoxdc1 Gene from Coniothyrium Minitans
Author(s):
YANG Jing ZHAO Qian-qian NIU Lu ZHANG Yuan-yu WANG Yi-sheng LI Hai-yun XING Guo-jie YANG Xiang-dong
(Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Changchun 130033, China)
Keywords:
Soybean Sclerotinia stem rot Sclerotinia sclerotiorum Oxalic acid Cmoxdc1 Resistance
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2020.05.0712
Abstract:
It is widely accepted that oxalic acid (OA) is a key virulence factor which plays an essential role in the pathogenesis of sclerotinia stem rot (SSR) and is closely related to the pathogenicity of S.sclerotiorum. In this study, an oxalic acid decarboxylase gene Cmoxdc1 from Coniothyrium minitans, a ubiquitous antagonistic fungus of S.sclerotiorum, was introduced into the soybean cultivar Jack susceptible to SSR, and stable transgenic lines were generated to evaluate for their tolerance to OA and resistance to SSR. Molecular characterization confirmed the integration with single or double copies of insertions and expression at the transcriptional level of the foreign gene Cmoxdc1 in transgenic soybean. OA treatment with externally applied OA (60 mmol?L-1) showed that the transgenic plants exhibited significant reduced lesion size on the detached leaves by 88.80%-89.98% reduction of lesion area relative to the non-transformed (NT) plants at 7 d after OA application. S.sclerotiorum inoculation revealed limited lesion development and less lesion sizes in transgenic plants, with 41.38%-43.51% of lesion lengths (4 d after inoculation) in the detached stem assay and 8.68%-26.98% of lesion areas (7 d after inoculation) in the detached leaf assay, respectively, as that of the corresponding NT control. Meanwhile, decreased OA content were also observed in the transgenic leaves after S.sclerotiorum inoculation. In conclusion, the results demonstrate that the expression of Cmoxdc1 from C.minitans significantly enhanced OA tolerance and SSR resistance in transgenic soybean plants.

References:

[1]Koenning S R, Wrather J A.Suppression of soybean yield potential in the continental United States by plant diseases from 2006 to 2009[J/OL]. Plant Health Progress, 2010. doi:10.1094/PHP-2010-1122-01-RS.[2]Cunha W G, Tinoco M L P, Pancoti H L, et al. High resistance to Sclerotinia sclerotiorum in transgenic soybean plants transformed to express an oxalate decarboxylase gene[J]. Plant Pathology, 2010, 59(4): 654-660.[3]赵丹, 许艳丽, 李春杰. 大豆菌核病的识别与综合防治[J]. 大豆通报, 2006(3): 15-16. (Zhao D, Xu Y L, Li C J. Identification and integrated managements for soybean Sclerotinia sclerotiorum[J]. Soybean Science and Technology, 2006(3): 15-16.)[4]Bolton M D, Thomma B P H J, Nelson B D. Sclerotinia sclerotiorum (Lib.) de Bary:Biology and molecular traits of a cosmopolitan pathogen[J]. Molecular Plant Pathology, 2010, 7(1): 1-16.[5]董利东, 王金生, 吴俊江, 等. 野生大豆种质资源对大豆菌核病抗性评价[J]. 大豆科学, 2014, 33(6): 900-909. (Dong L D, Wang J S, Wu J J, et al. Identification the resistance of wild soybean germplasm to Sclerotinia sclerotiorum[J]. Soybean Science, 2014, 33(6): 900-909.)[6]Kim H S, Diers B W. Inheritance of partial resistance to sclerotinia stem rot in soybean[J]. Crop Science, 2000, 40(1): 55-61.[7]Vuong T D, Diers B W, Hartman G L. Identification of QTL for resistance to sclerotinia stem rot in soybean plant introduction 194639 [J]. Crop Science, 2008, 48(6): 2209-2214.[8]Zhao X,Han Y P, Li Y H, et al. Loci and candidate gene identification for resistance to Sclerotinia sclerotiorum in soybean (Glycine max L. Merr.) via association and linkage maps[J]. Plant Journal for Cell and Molecular Biology, 2015, 82(2): 245-255.[9]McCaghey M, Willbur J, Ranjan A, et al. Development and evaluation of Glycine max germplasm lines with quantitative resistance to Sclerotinia sclerotiorum[J]. Frontiers in Plant Science, 2017, 8: 1495.[10]Kabbage M, Yarden O, Dickman M B. Pathogenic attributes of Sclerotinia sclerotiorum: Switching from a biotrophic to necrotrophic lifestyle[J]. Plant Science, 2015, 233: 53-60.[11]Godoy G, Steadman J R, Dickman M B, et al. Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris[J]. Physiological and Molecular Plant Pathology, 1990, 37(3): 179-191.[12]Dutton M V, Evans C S. Oxalate production by fungi: Its role in pathogenicity and ecology in the soil environment[J]. Canadian Journal of Microbiology, 1996, 42: 881-895.[13]Cessna S G, Sears V E, Dickman M B, et al. Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host[J]. Plant Cell, 2000, 12: 2191-2199.[14]Rollins J A. The Sclerotinia sclerotiorum pac1 gene is required for sclerotial development and virulence[J]. Molecular Plant Microbe Interactions, 2003, 16(9): 785-795. [15]Walz A, Zingen-Sell I, Loeffler M, et al. Expression of an oxalate oxidase gene in tomato and severity of disease caused by Botrytis cinerea and Sclerotinia sclerotiorum[J]. Plant Pathology, 2010, 57(3): 453-458.[16]Williams B, Kabbage M, Kim H J, et al. Tipping the balance:Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment[J]. PLoS Pathogens, 2011, 7(6): e1002107.[17]Kumar V, Chattopadhyay A, Ghosh S, et al. Improving nutritional quality and fungal tolerance in soya bean and grass pea by expressing an oxalate decarboxylase[J]. Plant Biotechnology Journal, 2016, 14(6): 1394-1405.[18]Wegulo S N, Yang X B, Martinson C A. Soybean cultivar responses to Sclerotinia sclerotiorum in field and controlled environment studies[J]. Plant Disease, 1998, 82(11): 1264-1270.[19]Kolkman J M, Kelly J D. An indirect test using oxalate to determine physiological resistance to white mold in common bean[J]. Crop Science, 2000, 40(1): 281-285.[20]孙明明, 韩英鹏, 陈浩, 等. 大豆菌核病鉴定方法比较及分析[J]. 大豆科学, 2007, 26(5): 728-731. (Sun M M, Han Y P, Chen H, et al. Comparisons and analysis on the methods of evaluating tolerance to soybean white mould[J]. Soybean Science, 2007, 26(5): 728-731.)[21]Donaldson P A, Anderson T, Lane B G, et al. Soybean plants expressing an active oligomeric oxalate oxidase from the wheat gf-2.8 (germin) gene are resistant to the oxalate-secreting pathogen Sclerotina sclerotiorum[J]. Physiological and Molecular Plant Pathology, 2001, 59(5): 297-307.[22]Cober E R, Rioux S, Rajcan I, et al. Partial resistance to white mold in a transgenic soybean line[J]. Crop Science, 2003, 43(1): 92-95.[23]Hu X, Bidney D L, Yalpani N, et al. Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower[J]. Plant Physiology, 2003, 133(1): 170-181.[24]Livingstone D M, HamptonJ L, Phipps P M, et al. Enhancing resistance to Sclerotinia minor in peanut by expressing a barley oxalate oxidase gene[J]. Plant Physiology, 2005, 137(4): 1354-1362.[25]Dias B B A, Cunha W G, Morais L S, et al. Expression of an oxalate decarboxylase gene from Flammulina sp. in transgenic lettuce (Lactuca sativa) plants and resistance to Sclerotinia sclerotiorum[J]. Plant Pathology, 2006, 55(2): 187-193.[26]Yang X D, Yang J, Wang Y S, et al. Enhanced resistance to sclerotinia stem rot in transgenic soybean that overexpresses a wheat oxalate oxidase[J]. Transgenic Research, 2019, 28(1): 103-114.[27]Kesarwani M, Azam M, Natarajan K, et al. Oxalate decarboxylase from Collybia velutipes: Molecular cloning and its overexpression to confer resistance to fungal infection in transgenic tobacco and tomato[J]. Journal of Biological Chemistry, 2000, 275(10): 7230-7238.[28]Sun X P, Zhao Y, Jia J C, X, et al. Uninterrupted expression of Cmsit1 in a sclerotial parasite coniothyrium minitans leads to reduced growth and enhanced antifungal ability[J]. Frontiers in Microbiology, 2017, 8: 2208.[29]Lou Y, Han Y, Yang L, et al.CmpacC regulates mycoparasitism, oxalate degradation and antifungal activity in the mycoparasitic fungus Coniothyrium minitans[J]. Environmental Microbiology, 2016, 17(11): 4711-4729.[30]曾丽梅. 盾壳霉草酸脱羧基因的克隆、功能验证及生防作用研究[D].武汉: 华中农业大学, 2013. (Zeng L M. Charavterization of oxalate decarboxylase genes in coniothyrium minitans: Cloning, functional analysis and roles in biological control[D]. Wuhan: Huazhong Agricultural University, 2013.)[31]Holsters M, de Waele D, Depicker A, et al. Transfection and transformation of Agrobacterium tumefaciens[J].Molecular and General Genetics, 1978,183:181-187.[32]Yang J, Xing G J, Niu L, et al. Improved oil quality in transgenic soybean seeds by RNAi-mediated knockdown of GmFAD2-1B[J]. Transgenic Research, 2018, 27(2): 155-166.[33]Edwards K, Johnstone C, Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis[J].Nucleic Acids Research, 1991, 19(6): 1349.[34]Telzur N, Abbo S, Myslabodski D, et al. Modified CTAB procedure for DNA isolation from Epiphytic cacti of the genera Hylocereus and Selenicereus (Cactaceae)[J]. Plant Molecular Biology Reporter, 1999, 17(3): 249-254.[35]Kull L S, Vuong T D, Powers K S, et al. Evaluation of resistance screening methods for sclerotinia stem rot of soybean and dry bean[J]. Plant Disease, 2007, 87(12): 1471-1476.[36]Vale F X R, Fernandes Filho E I, Liberato J R. QUANT-A software for plant disease severity assessment[C]. New Zealand: 8th International Congress of Plant Pathology, 2003:105. [37]Kim K S, Min J Y, Dickman M B. Oxalic acid is an elicitor of plant programmed cell death during Sclerotinia sclerotiorum disease development[J]. Molecular Plant Microbe Interactions, 2008, 21(5): 605-612.

Memo

Memo:
-
Last Update: 2020-10-21