|Table of Contents|

Prevention Effect and Photosynthetic Performance in Bacillus Megaterium Sneb207 Against Soybean Cyst Nematode(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2020年04期
Page:
605-611
Research Field:
Publishing date:

Info

Title:
Prevention Effect and Photosynthetic Performance in Bacillus Megaterium Sneb207 Against Soybean Cyst Nematode
Author(s):
ZHOU Yuan-yuan12 GUO Yong-xia134 DUAN Yu-xi2 LI Hai-yan1 CHEN Li-jie2
(1.Agricultural College, Heilongjiang Bayi Agricultural University, Daqing 163316, China; 2.College of Plant Protection, Shenyang Agricultural University/Nematology Institute of Nothern China, Shenyang 110866, China; 3.Heilongjiang Province Cultivating Collaborative Innovation Center for the Beidahuang Modern Agricultural Industry Technology, Daqing 163316, China; 4.Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, Daqing 163316, China)
Keywords:
Bacillus megaterium Sneb207 Soybean cyst nematode Photosynthetic performance Differentially expressed genes
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2020.04.0605
Abstract:
To determine the effectiveness of Bacillus megaterium Sneb207 against soybean cyst nematodes and early photosynthesis in soybean, the seed coating technology was used to coat the susceptible soybean varieties, and the sterile water coating was used as a control treatment in greenhouse experiments. We surveyed the cysts on the soybean roots and in the rhizosphere soil, the influence on soybean growth after inoculation 30-35 d, and measured the net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), intercellular CO2 concentration (Ci) and chlorophyll content after inoculated 3, 7, 10 and 14 d. We found that, in the Sneb207 coated and nematode inoculated treatment, the main root length and the number of fibrous roots of soybean were increased, and the soybean cyst nematode outside the soybean roots and in rhizosphere soil were suppressed, the inhibition rates of cysts reached 44.93% and 57.19%, respectively. Further, the Sneb207 coated treatment increased the Pn and chlorophyll content. In addition, in the four genes, there were two genes up-regulated and one gene down-regulated expression when the resistance to SCN of soybean was induced by Sneb207 , and there were significant difference with control, indicating that they may play a role in Sneb207-induced resistance to SCN of soybean.

References:

[1]Wrather J A, Koenning S R. Estimates of disease effects on soybean yields in the United States 2003 to 2005[J]. Journal of Nematology, 2006, 38(2): 173-180.[2]Hosseini P, Matthews B F. Regulatory interplay between soybean root and soybean cyst nematode during a resistant and susceptible reaction[J]. BMC Plant Biology, 2014, 14(1): 300.[3]Niblack T L. Soybean cyst nematode management reconsidered[J]. Plant Disease, 2005, 89(10): 1020-1026.[4]Zhou Y Y, Wang Y Y, Zhu X F, et al. Management of the soybean cyst nematode Heterodera glycines with combinations of different rhizobacterial strains on soybean[J]. Plos One, 2017, 12(8): e0182654.[5]Zhao J, Liu D, Wang Y Y, et al. Evaluation of Bacillus aryabhattai Sneb517 for control of Heterodera glycines in soybean[J]. Biological Control, 2020, 142: 104147.[6]Zhao J, Liu D, Wang Y, et al. Biocontrol potential of Microbacterium maritypicum Sneb159 against Heterodera glycines[J]. Pest Management Science, 2019, 75: 3381-3391.[7]Liu D, Chen L, Zhu X F, et al. Klebsiella pneumoniae SnebYK mediates resistance against Heterodera glycines and promotes soybean growth[J]. Front Microbiol, 2018, 9:1134.[8]贺文婷, 彭德良. 植物对线虫胁迫的生理生化响应机制[J]. 植物保护, 2007, 33(2): 11-15. (He W T, Peng D L. Physiological and biochemical response of plant to nematode stress[J]. Plant Protection, 2007, 33(2): 11-15.)[9]Ali M A, Abbas A, Kreil D P, et al. Overexpression of the transcription factor RAP2.6 leads to enhanced callose deposition in syncytia and enhanced resistance against the beet cyst nematode Heterodera schachtii in Arabidopsis roots[J]. BMC Plant Biology, 2013, 13(1): 47.[10]Hamilton E W, Heckathorn S A, Joshi P, et al. Interactive effects of elevated CO2 and growth temperature on the tolerance of photosynthesis to acute heat stress in C3 and C4 species[J]. Journal of Integrative Plant Biology, 2008, 50(11): 13.[11]Sampat N, Indu R S, Trivedi P C. Effect of different inoculum levels of nematode, Heterodera avenae on photosynthetic efficiency of Barley(Hordeum vulgare L.)[J]. Asian Journal of Experimental Sciences, 2001, 15: 1-8.[12]Schans J, Arntzen F K. Photosynthesis, transpiration and plant growth characters of different potato cuiltivars at various densities of Globodera pallida[J]. Netherlands Journal of Plant Pathology, 1991, 97: 297-310.[13]De Ruijter F J, Haverkort A J. Effects of potato-cyst nematodes (Globodera pallida) and soil pH on root growth, nutrient uptake and crop growth of potato[J]. European Journal of Plant Pathology, 1999, 105: 61-76.[14]高瑞贺, 骆有庆, 石娟. 松材线虫入侵对马尾松树光合特性的影响[J]. 林业科学研究, 2019(1): 65-73. (Gao R H, Luo Y Q, Shi J. Effect of pine wilt disease infection on leaf photosynthetic characteristics of Masson Pine[J]. Forest research, 2019(1): 65-73.)[15]叶德友, 钱春桃, 陈劲枫. 酸黄瓜对南方根结线虫抗性的光合响应[J]. 中国农业科学, 2011, 44(20): 4248-4257. (Ye D Y, Qian C T, Chen J F. Photosynthetic response to the root-knot Nematode Meloidogyne incognita in resistant cultivar sour cucumber (Cucumis hystrix Chakr) [J]. Scientia Agricultura Sinica, 2011, 44(20): 4248-4257.)[16]王仁雷, 刘友良, 华春. 植物叶黄素循环的组成、功能和调节(综述)[J]. 亚热带植物科学, 2000, 29(4): 59-66. (Wang R L, Liu Y L, Hua C. A review of composition, function and regulation of the xanthophyll cycle in higher plants[J].Subtropical Plant Science, 2000, 29(4): 59-66.)[17]李宏伟, 李滨, 郑琪, 等. 小麦幼苗从低光到强光适应过程中光合和抗氧化酶变化[J]. 作物学报, 2010, 36(3): 449-456. (Li H W, Li B, Zheng Q, et al. Variation in photosynthetic traits and antioxidant enzyme activities of wheat seedlings transferred from low to high light growth condition[J]. Acta Agronomica Sinica, 2010, 36(3): 449-456.)[18]王曼玲, 胡中立, 周明全, 等. 植物多酚氧化酶的研究进展[J]. 植物学通报, 2005, 22(2): 215-222. (Wang M L, Hu Z L, Zhou M Q, et al. Advances in research of polyphenol oxidase in plants[J]. Chinese Bulletin of Botany, 2005, 22(2): 215-222.)[19]董臣, 刁英, 王曼玲, 等. 莲多酚氧化酶基因的克隆及序列分析[J]. 分子植物育种, 2006, 4(6): 791-796. (Dong C, Diao Y, Wang M L, et al. Molecular cloning and analysis of polyphenol oxidase gene in lotus[J]. Molecular Plant Breeding, 2006, 4(6): 791-796.)[20]罗璇, 段玉玺, 陈立杰, 等. 大豆胞囊线虫不同生理小种对大豆根内酶活力的影响[J]. 大豆科学, 2010, 29(3): 448-452. (Luo X, Duan Y X, Chen L J, et al. Effect of different races of soybean cyst nematology on the activities of the enzymes in roots of soybean[J]. Soybean Science, 2010, 29(3): 448-452.)[21]周银, 王松太, 董坤, 等. 蕙兰CfAOC基因的克隆及表达分析[J]. 北方园艺, 2015(14):92-97. (Zhou Y, Wang S T, Dong K, et al. Cloning and expression analysis of allene oxide cyclase gene(CfAOC) in Cymbidium faberi[J]. Northern Horticulture, 2015(14): 92-97.)[22]孙华, 段玉玺, 焦石, 等. 抗大豆胞囊线虫的根际促生菌的筛选及其鉴定[J]. 大豆科学, 2009, 28(3): 507-510. (Sun H, Duan Y X, Jiao S, et al. Filtration and identification of plant growth promoting rhizobacteria on resistance of soybean cyst nematode[J]. Soybean Science, 2009, 28(3): 507-510.)[23]周园园. 巨大芽孢杆菌Sneb207诱导大豆抗胞囊线虫机理研究[D]. 沈阳: 沈阳农业大学, 2018. (Zhou Y Y. Biocontrol control mechanism of Bacillus megaterium Sneb207 against soybean cyst nematode[D]. Shenyang: Shenyang Agricultural University, 2018.)[24]张宪政. 作物生理研究法[M]. 北京: 农业出版社, 1992. (Zhang X Z. Crop physiology[M]. Beijing: Agricultural Press, 1992.)[25]明华, 胡春胜, 张玉铭, 等. 浸提法测定玉米叶绿素含量的改进[J]. 玉米科学, 2007, 15(4): 93- 95, 99. (Ming H, Hu C S, Zhang Y M, et al. Improved extraction methods of chlorophyll from maize[J]. Journal of Maize Sciences, 2007, 15(4): 93- 95, 99.)[26]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J].Methods, 2001, 25(4): 402-408.[27]潘瑞炽. 植物生理学[M]. 5 版. 北京: 高等教育出版社, 2004: 56-57. (Pan R C. Plant Physiology[M]. 5th. Beijing: Higher Education Press, 2004: 56-57.)[28]许大全. 光合作用效率[M]. 上海: 上海科学技术出版社, 2002: 163-167. (Xu D Q. Photosynthesis efficiency[M]. Shanghai: Shanghai Science and Technology Press, 2002: 163-167.)[29]周园园, 王媛媛, 朱晓峰, 等. 生物种衣剂SN101 的研制及其对大豆胞囊线虫病的防效[J]. 中国油料作物学报, 2014, 36(4): 513-518. (Zhou Y Y, Wang Y Y, Zhu X F, et al. Development of a biological seed - coating preparation and it′s efficiency in prevention of Heterodera glycines[J]. Chinese Journal of Oil Crop Sciences, 2014, 36(4): 513-518. [30]吴慧平, 解宜林, 杨荣铮. 水稻潜根线虫接虫期、接虫量对水稻叶绿素含量及相关生化指标的影响[J]. 安徽农业科学, 1998, 26(3): 256-258. (Wu H P, Xie Y L, Yang R Z. Effect of rice root nematode on chlorophyl content and relative biochemical index of rice plant[J]. Journal of Anhui Agricultural Sciences, 1998, 26(3): 256-258.)[31]张立宁, 程继鸿, 杨瑞, 等. 不同温敏型番茄感染根结线虫后光合特性变化[J]. 西北农业学报, 2010, 19(5): 149-152. (Zhang L N, Cheng J H, Yang R, et al. Photosynthetic characteristics of thermo-sensitive tomato cultivars inoculated by nematode[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2010, 19(5): 149-152.)[32]叶德友, 钱春桃, 陈劲枫. 酸黄瓜对南方根结线虫抗性的光合响应[J]. 中国农业科学, 2011, 44(20): 4248-4257. (Ye D Y, Qian C T, Chen J F. Photosynthetic response to the root-knot nematode Meloidogyne incognita in resistant cultivar sour cucumber (Cucumis hystrix Chakr.)[J]. Scientia Agricultura Sinica, 2011, 44(20): 4248-4257.)[33]郭衍银, 王秀峰, 徐坤, 等. 南方根结线虫对生姜生长及内源激素的影响[J]. 植物病理学报, 2004, 34(1): 49-54. (Guo Y Y, Wang X F, Xu K, et al. Effects of Meloidogyne incognita on the growth and intrinsic hormones of ginger[J]. Acta Phytopathologica Sinica, 2004, 34(1): 49-54.)[34]刘全吉, 孙学成, 胡承孝, 等. 砷对小麦生长和光合作用特性的影响[J]. 生态学报, 2009, 29(2): 854-859. (Liu Q J, Sun X C, Hu C X, et al. Growth and photosynthesis characteristics of wheat (Triticum aestivum L.) under arsenic stress condition[J]. Acta Ecologica Sinica, 2009, 29(2): 854- 859.)[35]Hubbard R M, Ryan M G, Stiller V, et al. Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine[J]. Plant, Cell and Environment, 2001, 24: 113-121. [36]Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 1982, 33: 317- 345.[37]陈志辉, Walker R P, Legood R C. 高等植物中的磷酸烯醇式丙酮酸羧激酶[J]. 植物生理学报, 2000, 36(5):479-484. (Chen Z H, Walker R P, Legood R C. Phosphoenolpyruvate carboxykinase in higher plants[J]. Plant Physiology Communications, 2000, 36(5): 479-484.)[38]施翠娥, 高扬, 王玉龙, 等. 松材线虫对马尾松林土壤微生物生物量及酶活性的影响[J]. 生态学杂志, 2015, 34(4): 1046-1051. (Shi C E, Gao Y, Wang Y L, et al. Effect of pine wood nematode on soil microbial biomass and enzyme activity of Pinus massoniana forest[J]. Chinese Journal of Ecology, 2015, 34(4): 1046-1051.) [39]李海燕, 段玉玺, 陈立杰, 等. 大豆胞囊线虫3号生理小种胁迫下不同抗性大豆品种的生化响应[J]. 大豆科学, 2014, 33(5): 783-786. (Li H Y, Duan Y X, Chen L J, et al. Biochemical reaction of different resistant soybean varieties to race 3 of soybean cyst nematode[J]. Soybean Science, 2014, 33(5): 783-786.[40]何静雯, 赵晟, 岳庆春, 等. 弱光胁迫下‘鄞红’葡萄光合特性及相关基因的表达[J]. 西南农业学报, 2018, 31(12): 82-88. (He J W, Zhao C, Yue Q C, et al. Effects of weak light stress on photosynthetic characteristics and relative gene expression of ‘Yinhong’ grape[J]. Southwest China Journal of Agricultural sciences, 2018, 31(12): 82-88.)[41]陈冲, 刘双, 王丹丹, 等. 水杨酸诱导黄瓜PCD的鉴定及相关基因的表达分析[J]. 华北农学报, 2018, 33(6): 60-67. (Chen C, Liu S, Wang D D, et al. Identification of PCD induced by salicylic acid and expression analysis of genes related with PCD in cucumber[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(6): 60-67. [42]Noga N, Fatta B G, Rachel O, et al. Tight regulation of allene oxide synthase (AOS) and allene oxide cyclase-3 (AOC3) promote Arabidopsis susceptibility to the root-knot nematode Meloidogyne javanica[J]. European Journal of Plant Pathology, 2017, 150(4): 1-17.

Memo

Memo:
-
Last Update: 2020-09-02