|Table of Contents|

Effects of S3307 and CCC Mixed Trace Element Dressing on the Photosynthetic Physiology and Yield of Soybean(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2020年04期
Page:
587-594
Research Field:
Publishing date:

Info

Title:
Effects of S3307 and CCC Mixed Trace Element Dressing on the Photosynthetic Physiology and Yield of Soybean
Author(s):
ZHANG Chun-yu JIN Xi-jun ZHANG Ming-cong WANG Meng-xue CAO Liang REN Chun-yuan HU Guo-hua ZHANG Yu-xian
(College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, China)
Keywords:
Soybean S3307 CCC Trace elements Photosynthesis Yield
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2020.04.0587
Abstract:
In order to clarify the effect of the combination of the two growth regulators S3307 and CCC on growth of soybeans, promoting the application of compound growth regulator in production, we took cell comparison method to study the effects of the above-mentioned two hormones and trace elements on the photosynthesis, fluorescence characteristics, dry matter accumulation and yield of soybean.We set four treatments indued seed dressing with S3307 and CCC with trace elements S3307 with trace elements(S), CCC with trace elements(C), S3307+CCC with trace elements(S+C), and no seed dressing(CK). The results showed that compared with CK, the Pn, Tr, Gs and Ci of soybean leaves at seedling, pod-setting and bulging stages of S, C and S+C treatments increased. The average increment of the indexes were respectively 17.3%-42.8%, 25.2%-52.8%, 4.6%-5.4% and 19.9%-30.8%. The ФPSⅡ, ETR, Fv/m and Fv/o values of S, C, S+C treatments at seedlings, pods and bulges stage all increased. The average increment were respectively 26.7%-71.1%, 25.8%-60.5%, 7.4%-15.7% and 51.1%-89.1%. In terms of soybean morphology, compared with CK, the plant height of S, C and S+C treatments at the seedling stage respectively reduced 3.5%, 3.1% and 3.4%. The average leaf area per plant increased 2.4%-23.4%. S+C, S, C treatments could promote the growth and development of the organs below the ground. In terms of yield, S+C and S treatments could significantly increase the number of seeds per plant and the number of pods per plant, with growth rates of 12.3%-22.1% and 19.3%-20.7%. Compared with CK, the yield of S, C and S+C treatments increased 20.2%, 5.9% and 22.7% respectively. In summary, the combination of S3307 and CCC could increase the gas exchange parameters of photosynthesis, improve the fluorescence index, promote the growth of seedlings, increase the number of pods and seeds per plant, and ultimately increase soybean yield. The effect of S+C treatment in this study was remarkable, which was suitable for the actual production application in Heilongjiang reclamation area. At the same time, this study verified that the combined application of compound plant growth regulators and trace elements had a positive effect on the growth of soybean with better effect comparing with plant growth regulators alone.

References:

[1]崔宁波, 刘望. 全球大豆贸易格局变化对我国大豆产业的影响及对策选择[J]. 大豆科学, 2019, 38(4): 629-634. (Cui N B, Liu W. The impact and countermeasures option of global soybean trade pattern change on China′s soybean industry [J]. Soybean Science, 2019, 38(4): 629-634.)[2]曾学明. 我国大豆产业发展战略规划研究[J]. 中国农业资源与区划, 2017, 38(9): 89-97. (Zeng X M. Research on the strategic planning for the development of soybean industry in China [J]. China Agricultural Resources and Regional Planning, 2017, 38 (9): 89-97.)[3]屈梦瑶, 刘慧芹, 刘峄, 等. 植物生长调节剂的种类及应用前景[J]. 天津农林科技, 2019(5): 34-36, 39. (Qu M Y, Liu H Q, Liu Y, et al. The types and application prospects of plan growth regulators[J] .Tianjin Agriculture and Forestry Science and Technology, 2019(5): 34-36, 39.)[4]梁晓艳, 刘春娟, 冯乃杰, 等. 两种生长调节剂对大豆叶片昼夜同化物生理代谢及产量的影响[J]. 大豆科学, 2019, 38(2): 244-250. (Liang X Y, Liu C J, Feng N J, et al. Effects of two growth regulators on physiological metabolism and yield of diurnal assimilation of soybean leaves [J]. Soybean Science, 2019, 38(2): 244-250.)[5]谢雪梅. 三唑类植物生长调节剂的立体选择性环境行为研究[D]. 杭州: 浙江工业大学, 2010. ( Xie X M. Stereoselective environmental behavior of triazole plant growth regulators[D]. Hangzhou: Zhejiang University of Technology, 2010.)[6]左官强, 王诗雅, 冯乃杰, 等. 烯效唑对淹水胁迫下大豆光合生理及表型的影响[J]. 生态学杂志, 2019, 38(9): 2702-2708. (Zuo G Q, Wang S Y, Feng N J, et al. Effects of uniconazole on photosynthetic physiology and phenotype of soybean under flooding stress[J]. Chinese Journal of Ecology, 2019, 38(9): 2702-2708.)[7]常瑞丰, 王召元, 张立莎, 等. 烯效唑在果树上应用的研究进展[J]. 安徽农学通报, 2013, 19(3): 61-63. (Chang R F, Wang Z Y, Zhang L S, et al. Research progress on application of uniconazole in fruit trees[J]. Anhui Agricultural Science Bulletin, 2013,19(3): 61-63.)[8]薛艳. 植物生长延缓剂对不同作物的作用及其机理研究[D]. 武汉: 华中农业大学, 2014. (Xue Y. Study on the effect of plant growth retarders on different crops and its mechanism[D]. Wuhan: Huazhong Agricultural University, 2014.)[9]卢政茂, 崔东亮, 马宏娟, 等. 植物生长调节剂与除草剂混用对水稻的安全性及对除草效果的影响[J]. 农药, 2017, 56(5): 388-390. (Lu Z M, Cui D L, Ma H J, et al. The safety of rice plant mixed with herbicides and its effect on weed control[J]. Pesticides, 2017, 56 (5): 388-390.)[10]朱同生. 不同植物生长调节剂与2,4-D异辛酯协同对大豆生理代谢的影响[D]. 南京: 南京农业大学, 2009. (Zhu T S. Effects of different plant growth regulators and 2,4-D isooctyl on physiological metabolism of soybean [D]. Nanjing: Nanjing Agricultural University, 2009.)[11]易书佳, 孔祥清, 徐宇, 等. 植物生长调节剂混用对水稻同化物及三种保护酶的影响[J]. 黑龙江八一农垦大学学报, 2014, 26(6): 11-15. (Yi S J, Kong X Q, Xu Y, et al. Effects of mixed plant growth regulators on rice assimilation and three protective enzymes[J]. Journal of Heilongjiang Bayi Agricultural University, 2014, 26(6): 11-15.)[12]张爱媛. 根瘤菌与钼肥对大豆养分吸收和产量影响的研究[D]. 哈尔滨: 东北农业大学, 2015. (Zhang A Y. Effect of rhizobium and molybdenum fertilizer on nutrient absorption and yield of soybean[D]. Harbin: Northeast Agricultural University, 2015.)[13]冯元琦. 硅肥—土壤不可或缺[J]. 中国石油和化工, 2001(1): 33-35, 57. (Feng Y Q. Silicone fertilizer-Indispensable for the soil[J]. China Petroleum and Chemical Industry, 2001(1): 33-35, 57.)[14]顾少龙, 史宏志. 光照对烤烟生长发育及质量形成的影响研究进展[J]. 河南农业科学, 2010(5): 120-124. (Gu S L, Shi H Z. Research progress on the effects of light on the growth and quality of flue-cured tobacco[J]. Henan Agricultural Science, 2010(5): 120-124.)[15]姚兴东. 遮荫对大豆光合生理和农艺性状的影响[D]. 沈阳: 沈阳农业大学, 2018. (Yao X D. Effects of shading on photosynthetic physiology and agronomic traits of soybean[D]. Shenyang: Shenyang Agricultural University, 2018.)[16]刘星海. 植物多糖复合制剂对作物生长及产量的调控作用与机理研究[D]. 北京: 中国农业科学院, 2011. (Liu X H. Study on the regulation and mechanism of plant polysaccharide compounds on crop growth and yield[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011.)[17]钱武. 甘蓝型冬油菜光合特性与抗寒性分析[J]. 南方农业, 2018, 12(17): 29-31. (Qian W. Photosynthetic characteristics and cold resistance of winter rapeseed (Brassica napus L.)[J]. Southern Agriculture, 2018, 12 (17): 29-31.)[18]王畅, 赵海东, 冯乃杰, 等. S_(3307)和DTA-6对芸豆生殖生长阶段光合特性和产量的影响[J]. 草业学报, 2018, 27(11): 162-170. (Wang C, Zhao H D, Feng N J, et al. Effects of S_ (3307) and DTA-6 on photosynthetic characteristics and yield of kidney beans during reproductive growth stage[J]. Journal of Practicing Industry, 2018, 27(11): 162-170.)[19]温国泉, 刘永贤, 农梦玲, 等. 不同植物生长调节剂对南方淮山药叶片光合作用的影响[J]. 西南农业学报, 2016, 29(7): 1590-1594. (Wen G Q, Liu Y X, Nong M L, et al. Effects of different plant growth regulators on photosynthesis of Huaishan yam leaves[J]. Journal of Southwest Agricultural Sciences, 2016, 29 (7): 1590-1594.)[20]张洪鹏, 张盼盼, 李冰, 等. 烯效唑对淹水胁迫下大豆叶片光合特性及产量的影响[J]. 中国油料作物学报, 2016, 38(5): 611-618. (Zhang H P, Zhang P P, Li B, et al. Effects of uniconazole on photosynthetic characteristics and yield of soybean leaves under flooding stress [J]. Chinese Journal of Oil Crops, 2016, 38(5): 611-618.)[21]陈根云, 陈娟, 许大全. 关于净光合速率和胞间CO2浓度关系的思考[J]. 植物生理学通讯, 2010, 46(1): 64-66. (Chen G Y, Chen J, Xu D Q. Thinking about the relationship between net photosynthetic rate and intercellular CO2 concentration[J]. News of Plant Physiology, 2010,46(1): 64-66.)[22]徐洪文, 宋凤斌, 童淑媛. 两种不同基因型玉米苞叶叶绿素荧光特性差异分析[J]. 核农学报, 2008(5): 717-721, 673. (Xu H W, Song F B, Tong S Y. Difference analysis of chlorophyll fluorescence characteristics of two different genotype maize bracts[J]. Journal of Nuclear Agriculture, 2008 (5): 717-721, 673.)[23]王志军, 谢宗铭, 田又升, 等. 膜下滴灌和淹灌对水稻叶片PSⅡ叶绿素荧光光响应曲线的影响[J]. 华北农学报, 2015, 30(6): 216-225. (Wang Z J, Xie Z M, Tian Y S, et al. Effects of subsurface drip irrigation and subsurface irrigation on PSⅡchlorophyll fluorescence light response curve of rice leaves[J]. North China Agricultural Journal, 2015, 30(6): 216-225.)[24]左官强, 王诗雅, 冯乃杰, 等. 烯效唑对淹水胁迫下大豆光合生理及表型的影响[J]. 生态学杂志, 2019, 38(9): 2702-2708. (Zuo G Q, Wang S Y, Feng N J, et al. Effects of uniconazole on photosynthetic physiology and phenotype of soybean under flooding stress[J]. Chinese Journal of Ecology, 2019,38(9): 2702-2708.)[25]李伟才, 张红娜, 石胜友, 等. 成花诱导期喷施烯效唑和赤霉素对荔枝叶片叶绿素荧光特征的影响[J]. 热带作物学报, 2014, 35(12): 2414-2419. (Li W C, Zhang H N, Shi S Y, et al. Effects of spraying uniconazole and gibberellin on chlorophyll fluorescence characteristics of litchi leaves during flowering induction period [J]. Journal of Tropical Crops, 2014,35(12): 2414-2419.)[26]刘广银. 水稻不同基本苗群体经济产量直接形成期叶片光合速率与物质积累初步研究[D]. 重庆: 西南大学, 2011. (Liu G Y. Preliminary study on leaf photosynthetic rate and material accumulation in the direct formation stage of economic yield of different basic rice seedling populations[D]. Chongqing: Southwest University, 2011.)[27]庞婷, 陈平, 袁晓婷, 等. 种间距对不同结瘤特性套作大豆物质积累、鼓粒及产量形成的影响[J]. 中国农业科学, 2019, 52(21): 3751-3762. (Pang T, Chen P, Yuan X T, et al. Seed spacing was used to accumulate material accumulation, bulging and impact of yield formation[J]. Chinese Agricultural Science, 2019,52(21): 3751-3762.)[28]宫香伟, 刘春娟, 冯乃杰, 等. S_(3307)和DTA-6对大豆不同冠层叶片光合特性及产量的影响[J]. 植物生理学报, 2017, 53(10): 1867-1876. (Gong X W, Liu C J, Feng N J, et al. Effects of S_ (3307) and DTA-6 on photosynthetic characteristics and yield of different canopy leaves of soybean[J].Chinese Journal of Plant Physiology, 2017,53 (10): 1867-1876.)[29]王宝生, 刘春娟, 冯乃杰, 等. 植物生长调节剂对大豆植株上、中部干物质积累及产量的影响[J]. 南方农业学报, 2015, 46(9): 1567-1573. (Wang B S, Liu C J, Feng N J, et al. Effects of plant growth regulators on dry matter accumulation and yield in soybean plants[J]. Southern Journal of Agriculture, 2015, 46(9): 1567-1573.)[30]姜龙, 曲金玲, 孙国宏, 等. 矮壮素、烯效唑和多效唑对水稻倒伏及产量的影响[J]. 中国林副特产, 2018(2): 10-13, 18. (Jiang L, Qu J L, Sun G H, et al. Effects of chlormequat, uniconazole and PP333 on rice lodging and yield[J]. Forest By-Product and Speciality in China, 2018(2): 10-13, 18.)

Memo

Memo:
-
Last Update: 2020-09-02