|Table of Contents|

Agronomic Trait Multi-factor Analysis of Lodging at Different Growth Periods in a Soybean RIL Population from the Northeast of China(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2020年04期
Page:
535-542
Research Field:
Publishing date:

Info

Title:
Agronomic Trait Multi-factor Analysis of Lodging at Different Growth Periods in a Soybean RIL Population from the Northeast of China
Author(s):
MENG Fan-fan ZHANG Yun-feng SUN Xing-miao WANG Ming-ling JIANG Hong-wei ZHENG Yu-hong FAN Xu-hong WANG Shu-ming
(Soybean Research Institute, Jilin Academy of Agricultural Sciences/National Engineering Research Center for Soybean, Changchun 130033, China)
Keywords:
Soybean Lodging Agronomic traits Growth stage Multi-factor analysis
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2020.04.0535
Abstract:
Stem strength, plant height, node number of main stem, internode length, shoot weight, and root weight are important agronomic traits relevant to soybean lodging. In order to comprehensively analysis these traits and reveal the lodging mechanism of soybean, this research used the geographic distant recombinant inbred lines population(RIL) to investigate the agronomic traits related to lodging and the lodging at the three main periods when lodging occurred. The relationship between main agronomic traits and the actual lodging at different development stages were analyzed. The results showed that the RIL population at R4 period began to lodging. The correlation at different development periods between each main agronomic trait and lodging situation of the family lines were different. The main agronomic traits affecting the lodging from R4 period to R8 period experienced an evolution from stem weight to plant height, internode length and stem strength. In this study, we designed eight lodging evaluation indexes using multiple agronomic characters to analyze comprehensively RIL field lodging situation. The lodging indexes at each growth period were extremely significantly positive relative with lodging situation of the family lines and the correlations were higher than that of any other single character. A lodging index [(inter-node length×stem weight)/stem strength] showed the highest correlation with actual lodging situation. It can replace the directly observation of the lodging situation with less agronomic traits and in the same time using a composite index in lodging resistance QTL mapping based on RIL population in order to provide a technological approach in the future to mine excellent alleles related to lodging resistance in soybean.

References:

[1]Orf J H, Chase K, Jarvik T, et al. Genetics of soybean agronomic traits:Comparison of three related recombinant inbred populations[J]. Crop Science, 1999, 39: 1642-1651.[2]Kabelka E A, Carlson S R, Diers B W, et al. Glycine soja PI468916 SCN resistance loci′s associated effects on soybean seed yield and other agronomic traits[J]. Crop Science, 2006, 46: 622-629.[3]周蓉, 王贤智, 张晓娟, 等. 大豆种质倒伏抗性评价方法研究[J]. 大豆科学, 2007, 26(4): 484-489. (Zhou R, Wang X Z, Zhang X J, et al. Evaluation method of lodging resistance in soybean germplasm[J]. Soybean Science, 2007, 26(4): 484-489.)[4]孟凡凡. 东北大豆不同时期倒伏多因子影响分析及其评价体系建立[C]. 中国作物学会大豆专业委员会. 第十届全国大豆学术讨论会论文摘要集, 2017: 131. (Meng F F. Multi-factor analysis and the establishment of index assessment system for soybean lodging at the different developmental stages in northeast China[C]. Soybean Professional Committee of China Crop Society. Abstracts of the Tenth National Soybean Academic Symposium, 2017: 131.)[5]周蓉, 王贤智, 陈海峰, 等. 大豆倒伏性及其相关性状的QTL分析[J]. 作物学报, 2009, 35(1): 57-65. (Zhou R, Wang X Z, Chen H F, et al. QTL analysis of lodging and related traits in soybean[J]. Acta Agronomica Sinica, 2009, 35(1): 57-65.)[6]钟开珍, 梁江, 韦清源, 等.大豆种质倒伏性遗传及其与主要农艺性状的相关分析[J]. 大豆科学, 2012, 31(5): 703-706. (Zhong K Z, Liang J, Wei Q Y, et al. Heredity of lodging and its correlation with agronomic traits in soybean germplasm[J]. Soybean Science, 2012, 31(5): 703-706.)[7]张东来, 徐瑶, 王家睿, 等. 大豆生育期间抗倒伏性状变化规律的研究[J]. 作物杂志, 2016(2): 112-117. (Zhang D L, Xu Y, Wang J R, et al. Studies on the regulation of lodging traits variation during soybean growth stages[J]. Crops, 2016(2): 112-117.)[8]刘卫国, 蒋涛, 佘跃辉, 等. 大豆苗期茎秆对荫蔽胁迫响应的生理机制初探[J]. 中国油料作物学报, 2011, 33(2): 141-146. (Liu W G, Jiang T, She Y H, et al. Preliminary study on physiological response mechanism of soybean(Glycine max) stem to shade stress at seedling stage[J]. Chinese Journal of Oil Crop Sciences, 2011, 33(2): 141-146.)[9]勾玲, 赵明, 黄建军, 等. 玉米茎秆弯曲性能与抗倒能力的研究[J]. 作物学报, 2008, 34(4): 653-661. (Gou L, Zhao M, Huang J J, et al. Bending mechanical properties of stalk and lodging-resistance of maize (Zea mays L.) [J]. Acta Agronomica Sinica, 34(4): 653-661.)[10]郭玉明, 袁红梅, 阴妍, 等. 茎秆作物抗倒伏生物力学评价研究及关联分析[J]. 农业工程学报, 2007, 23(7): 14-18. (Guo Y M, Yuan H M, Yin Y, et al. Biomechanical evaluation and gray relational analysis of lodging resistance of stalk crops[J]. Transactions of the CSAE, 2007, 23(7): 14-18. )[11]屈晓珅, 陈海涛, 邱丽娟, 等. 基于综合评价法的大豆抗倒伏性研究[J]. 大豆科学, 2012, 31(6): 899-902, 906. (Qu X S, Chen H T, Qiu L J, et al. Lodging resistance of soybean based on comprehensive evaluation method[J]. Soybean Science, 2012, 31(6): 899-902,906.)[12]徐瑶, 张锐, 董守坤, 等. 不同大豆品种鼓粒期茎秆力学特性与抗倒伏性差异研究[J]. 大豆科学, 2017, 36(6): 905-912. (Xu Y, Zhang R, Dong S K,et al. Study on the differences of mechanical properties and lodging resistance among different soybean varieties in seed-filling period[J]. Soybean Science, 2017, 36(6): 905-912.)[13]杨光, 张惠君, 宋书宏, 等. 超高产大豆根系相关性状的比较研究[J]. 大豆科学, 2013, 32(2): 176-181. (Yang G, Zhang H J, Song S H, et al. Comparison on some root related traits of super-high-yielding soybean[J]. Soybean Science, 2013, 32(2): 176-181.)[14]Lee S H, Bailey M A, Mian M A R, et al. Molecular markers associated with soybean plant height, lodging, and maturity across locations[J]. Crop Science, 1996, 36: 728-735.[15]黄中文, 王伟, 徐新娟, 等. 大豆重组自交家系群体动态株高及其相对生长速率与产量的关系[J]. 作物学报, 2011, 37(3): 559-562. (Huang Z W, Wang W, Xu X J , et al. Relationship of dynamic plant height and its relative growth rate with yield using recombinant inbred lines of soybean[J]. Acta Agronomica Sinica, 2011, 37(3): 559-562.)[16]莱利, 庄巧生, 杨作民. 小麦育种理论与实践[M]. 北京: 中国农业出版社, 1982: 111-123. (Riley J, Zhuang Q S, Yang Z M. Theory and practice of wheat breeding[M]. Beijing: Agricultural Press, 1982: 111-123.)[17]崛内久满, 古贺义昭. 水稻抗倒伏性与育种[J]. 农业技术, 1989, 44(9): 41-45. (Diuuchi H, Koga Y. Lodging resistance and breeding of rice[J]. Journal of Agricultural Technology, 1989, 44(9): 41-45.)[18]肖应辉, 罗丽华, 闫晓燕, 等. 水稻品种倒伏指数QTL分析[J]. 作物学报, 2005, 31(3): 348-354. (Xiao Y H, Luo L H, Yan X Y, et al. Quantitative trait locus analysis of lodging index in rice (Oryza sativa L.)[J]. Acta Agronomica Sinica, 2005, 31(3): 348-354.)[19]张秋英, 欧阳由男, 戴伟民. 水稻基部伸长节间性状与倒伏相关性分析及QTL 定位[J]. 作物学报, 2005, 31(6): 712-717. (Zhang Q Y, Ouyang Y N, Dai W M. Relationship between traits of basal elongating internodes and lodging and QTL mapping in rice (Oryza sativa L.)[J]. Acta Agronomica Sinica, 2005, 31(6): 712-717.)[20]姚瑞亮, 朱文祥. 小麦形态性状与倒伏的相关分析[J]. 广西农业生物科学, 1998(S1): 16-18. (Yao R L, Zhu W X. The correlation analysis of the stem traits and lodging in wheat[J]. Journal of Guangxi Agricultural Unvercity, 1998(S1): 16-18.)[21]Fournier C,Andrieu B. Dynamics of the elongation of internodes in maize (Zea mays L.): Analysis of phases of elongation and their relationships to phytomer development[J]. Annals of Botany, 2000, 86(3): 551-563.[22]刘胜群, 宋凤斌, 朱先灿, 等. 玉米穗下节间与抗倒性相关的某些性状对增加密度的响应[J]. 土壤与作物, 2013, 2(4): 145-149. ( Liu S Q, Song F B, Zhu X C, et al. Responses of internodes below ear and lodging-related traits to increased planting density in maize[J]. Soil and Crop, 2013, 2(4): 145-149.)[23]Jones R S, Mithcell C A, Mitchell C A. Effects of physical agitation on yield of greenhouse-grown soybean[J]. Crop Science, 1992, 32 (2): 404-408.[24]邱丽娟, 常汝镇. 大豆种质资源描述规范和数据标准[M]. 北京: 中国农业出版社, 2006. (Qiu L J, Chang R Z. Descriptors and data standard for soybean(Glycine spp.)[M]. Beijing: China Agriculture Press, 2006.)[25]闫以勋, 赵淑红, 杨悦乾, 等. 成熟期大豆茎秆力学特性研究[J]. 东北农业大学学报, 2012, 43(5): 46-49. (Yan Y X, Zhao S H, Yang Y Q, et al. Study on mechanics properties of soybean stems in mature stage[J]. Journal of Northeast Agricultural University, 2012, 43(5): 46-49.)[26]范冬梅, 杨振, 马占洲, 等. 多环境条件下大豆倒伏性相关形态性状的QTL分析[J]. 中国农业科学, 2012, 45(15): 3029-3039. (Fan D M, Yang Z, Ma Z Z, et al. QTL analysis of lodging-resistance related traits in soybean in different environments[J]. Scientia Agricultura Sinica, 2012, 45(15): 3029-3039.)[27]刘硕, 郭勇, 罗玲, 等. 大豆倒伏性相关QTL的整合及Overview分析[J]. 植物遗传资源学报, 2014, 15(1): 137-143. (Liu S, Guo Y, Luo L, et al. Integration and overview analysis of QTLs related to lodging in soybean(Glycine max)[J]. Journal of Plant Genetic Resources, 2014, 15(1): 137-143.)[28]尹振功, 王强, 孟宪欣, 等. 基于物理图谱的大豆倒伏性状QTL整合及元分析[J]. 黑龙江农业科学, 2018(9): 1-5. (Yin Z G, Wang Q, Meng X X, et al. Integration and overview analysis of QTLs related to lodging in soybean based on physical map[J]. Heilongjiang Agricultural Sciences, 2018(9): 1-5.)[29]董全中. 大豆倒伏相关性状的QTL定位[D]. 哈尔滨: 东北农业大学, 2019: 60-126. (Dong Q Z. Mapping QTL for lodging related traits in soybean[D]. Harbin: Northeast Agricultural University, 2019: 60-126.)

Memo

Memo:
-
Last Update: 2020-09-02