|Table of Contents|

Candidate Gene Mining of Soybean Node Numbers on the Main Stem Based on Overview and Physical Map of Soybean Genome(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2020年03期
Page:
370-376
Research Field:
Publishing date:

Info

Title:
Candidate Gene Mining of Soybean Node Numbers on the Main Stem Based on Overview and Physical Map of Soybean Genome
Author(s):
YIN Zhen-gong12 WANG Qiang2 MENG Xian-xin2 LIU Guang-yang2 GUO Yi-fan2 WANG Xiu-jun2 WEI Shu-hong2 LAI Yong-cai1
(1.Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Harbin 150086, China; 2.Institute of Crop Resources, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China)
Keywords:
Soybean Node numbers QTL Overview Candidate gene
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2020.03.0370
Abstract:
This study integrated and analysisd 54 QTLs related to node numbers on main stem based on the physical map of soybean reference genome for the first time. 11 confidence intervals with good reproducibility were obtained by overview analysis on the D1b, C2, B1, F, L and I linkage groups, and the L-linked group had more reciprocal confidence intervals. Gene annotation of the obtained candidate segments yielded 488 candidate genes, among which Glyma.11G087300, Glyma.20G014300, Glyma.13G221400, Glyma.06G243500, Glyma.13G052900 and Glyma.13G052700 participated in the plant hormone signal transduction (ID: Ko04075). It was speculated that these six genes play the genetic regulation role of soybean main stem through the gibberellin pathway and the auxin pathway. The pathways and candidate genes directly related to stem growth and number of main stem segments discovered in this study will provide new ideas for the construction of ideal plant type and soybean molecular assisted breeding.

References:

[1]Hoeck J A, Fehr W R, Shoemaker R C, et al. Molecular marker analysis of seed size in soybean[J]. Crop Science, 2003, 43(1): 68-74.[2]Zhang W K, Wang Y J, Luo G Z, et al. QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers[J]. Theoretical and Applied Genetics, 2004, 108(6): 1131-1139.[3]Kornegay J, White J W, Cruz O O. Growth habit and gene pool effects on inheritance of yield in common bean[J]. Euphytica, 1992, 62(3): 171-180.[4]Chardon F,Virlon B, Moreau L, et al. Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome[J]. Genetics, 2004, 168(4): 2169-2185.[5]王毅. 玉米本地化生物信息库的构建和QTL的整合、比较及元分析[D]. 武汉: 华中农业大学, 2006.(Wang Y. The construction of local maize bioinformatics database and integration, comparison and meta-analysis of QTL[D]. Wuhan: Huazhong Agricultural University, 2006.)[6]高利芳, 郭勇, 郝再彬, 等. 大豆株高QTL的“整合”及Overview分析[J]. 遗传, 2013, 35(2): 215-224. (Gao L F, Guo Y, Hao Z B, e al. Integration and “Overview” analysis of QTLs related to plant height in soybean[J]. Hereditas, 2011, 30(1): 1-7.)[7]李莹莹, 李瑞超, 程春光, 等. 大豆荚粒数相关QTL的Meta和Overview分析及其候选基因预测[J]. 农业生物技术学报, 2018, 26(11): 1821-1833. (Li Y Y, Li R C, Cheng C G, et al. Meta and overview analysis of QTL associated with pod and seed traits and candidate gene mining in soybean (Glycine max) [J]. Journal of Agricultural Biotechnology, 2018, 26(11): 1821-1833.)[8]Qin H, Liu Z, Wang Y, et al. Meta-analysis and overview analysis of quantitative trait locis associated with fatty acid content in soybean for candidate gene mining[J]. Plant Breeding, 2018, 137(2): 181-193.[9]O′connor D L, Elton S, Ticchiarelli F, et al. Cross-species functional diversity within the PIN auxin efflux protein family[J]. Elife, 2017, 6: e31804.[10]Gil P, Green P J. Regulatory activity exerted by the SAUR-AC1 promoter region in transgenicplants[J]. Plant Molecular Biology, 1997, 34(5): 803-808.[11]Hu W, Yan H, Luo S, et al. Genome-wide analysis of poplar SAUR gene family and expression profiles under cold, polyethylene glycol and indole-3-acetic acid treatments[J]. Plant Physiology and Biochemistry, 2018, 128: 50-65.[12]Wang M, Sun S, Wu C, et al. Isolation and characterization of the brassinosteroid receptor gene (GmBRI1) from Glycine max[J]. International Journal of Molecular Sciences, 2014, 15(3): 3871-3888.[13]Liu X, Feng Z M, Zhou C L, et al.Brassinosteroid (BR) biosynthetic gene lhdd10 controls late heading and plant height in rice (Oryza sativa L.)[J]. Plant Cell Reports, 2016, 35(2): 357-368.[14]Ma H,Yanofsky M F, Meyerowitz E M. AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes[J]. Genes and Development, 1991, 5(3): 484-495.[15]Chen Q S, Zhang Z C, Liu C Y, et al. QTL analysis of major agronomic traits in soybean[J]. Agricultural Sciences in China, 2007, 6(4): 399-405.[16]Li D, Sun M, Han Y, et al. Identification of QTL underlying soluble pigment content in soybean stems related to resistance to soybean white mold (Sclerotinia sclerotiorum)[J]. Euphytica, 2010, 172(1): 49-57.[17]Li Y L, Lin Y S, Huang P L, et al. Two paralogous genes encoding auxin efflux carrier differentially expressed in bitter gourd (Momordica charantia)[J]. International Journal of Molecular Sciences, 2017, 18(11): 2343.[18]Singh K, Singh J, Jindal S, et al. Structural and functional evolution of an auxin efflux carrier PIN1 and its functional characterization in common wheat[J]. Functional and Integrative Genomics, 2019, 19(1): 29-41.[19]Nardeli S M, Artico S, Aoyagi G M, et al. Genome-wide analysis of the MADS-box gene family in polyploid cotton (Gossypium hirsutum) and in its diploid parental species (Gossypium arboreum and Gossypium raimondii)[J]. Plant Physiology and Biochemistry, 2018, 127:169-184.[20]Mandel M A,Yanofsky M F. The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1[J]. Plant Cell, 1995, 7(11): 1763-1771.[21]Schmitz J,Franzen R, Ngyuen T H, et al. Cloning, mapping and expression analysis of barley MADS-box genes[J]. Plant Molecular Biology, 2000, 42(6): 899-913.[22]Heuer S, Hansen S, Bantin J, et al. The maize MADS box gene ZmMADS3 affects node number and spikelet development and is co-expressed with ZmMADS1 during flower development, in egg cells, and early embryogenesis[J]. Plant Physiology, 2001, 127(1): 33-45.

Memo

Memo:
-
Last Update: 2020-07-14