|Table of Contents|

Genetic Structure and Diversity of Soybean Cultivars Released from Huang-Huai-Hai and Southern China Based on TRAP Marker(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2020年03期
Page:
341-351
Research Field:
Publishing date:

Info

Title:
Genetic Structure and Diversity of Soybean Cultivars Released from Huang-Huai-Hai and Southern China Based on TRAP Marker
Author(s):
LIU Jia-lin CHEN Qi XIE Hui-min LUO Huo-lin YANG Bo-yun XIONG Dong-jin
(College of Life Science, Nanchang University, Nanchang 330031, China)
Keywords:
Soybean Huang-Huai-Hai Southern China Cultivar TRAP marker Gene diversity
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2020.03.0341
Abstract:
In order to evaluate and utilize the soybean germplasm resources in the Huang-Huai-Hai and southern region of China effectively with the new molecular marker technique, this research used target region amplification polymorphism (TRAP) to detect the genetic structure and diversity of 158 cultivated soybean from Huang-Huai-Hai and southern region of China. 21 groups of primers with rich polymorphism were selected from 84 groups of primers, which amplified 436 DNA bands totally. Each primer’s bands ranging from 18 to 26, and the average was 20.7. The range of Nei′s gene diversity (H) was 0.172 5-0.473 6, the Shannon information index (I) was 0.492 2-0.679 2, and the polymorphism information content (PIC) was 0.144 6-0.360 7. According to the cluster analysis based on TRAP molecular markers showed that soybean materials were divided into three categories, of which the two subgroups I and II were mainly Huang-Huai-Hai region soybean, subgroup III averaged soybean in Huang-Huai-Hai and southern region. Structure genetic structure analysis divided soybean into three different consanguinities. The results of the both analysis showed that there was no obvious regional correlation between the distribution of cultivated soybean.

References:

[1]熊冬金, 王吴彬, 赵团结, 等. 中国大豆育成品种10个重要家族的遗传相似性和特异性[J]. 作物学报, 2014, 40(6): 951-964. (Xiong D J, Wang W B, Zhao T J, et al. Genetic similarity and specificity of ten important soybean cultivar families released in China[J]. Acta Agronomica Sinica, 2014, 40(6): 951-964.)[2]Cho M J,Widholm J M, Vodkin L O. Cassettes for seed-specific expression tested in transformed embryogenic cultures of soybean[J]. Plant Molecular Biology Reporter, 1995, 13(3):255-269.[3]方宣钧, 吴为人, 唐记良作物DNA标记辅助育种[M]. 北京: 科学出版社, 2001. (Fang X J, Wu W R, Tang J L. DNA marker-assisted selection of breeding[M]. Beijing: Science Press, 2001.)[4]张博, 邱丽娟, 常汝镇. 中国大豆部分获奖品种与其祖先亲本间SSR标记的多态性比较和遗传关系分析[J]. 农业生物技术学报, 2003(4): 25-32. (Zhang B, Qiu L J, Chang R Z. Diversity comparison an genetic relationship analysis between awarded soybean cultivars and there ancestors in China[J]. Journal of Agricultural Biotechnology, 2003(4): 25-32.) [5]Song Q J, Jia G F, Zhu Y, et al. Abundance of SSR motifs and development of candidate polymorphic SSR markers (BARCSOYSSR_1 0) in soybean[J]. Crop Science, 2010, 50:1950-1960.[6]Wu X,Vuong T D, Leroy J A, et al. Selection of a core set of RILs from Forrest×Williams 82 to develop a framework map in soybean[J]. Theoretical and Applied Genetics, 2011, 122(6):1179-1187.[7]王彩洁, 孙石, 金素娟, 等. 中国大豆主产区不同年代大面积种植品种的遗传多样性分析[J]. 作物学报, 2013, 39(11): 1917-1926. (Wang C J, Sun S, Jin S J, et al. Genetic diversity analysis of widely-planted soybean varieties from different decades and major production regions in China[J]. Acta Agronomica Sinica, 2013, 39(11): 1917-1926.) [8]金尚昆, 朱玉萍, 缪依琳, 等. 黄淮海地区新育成大豆品系SSR标记多样性分析[J]. 大豆科学, 2018, 37(2):173-178. (Jin S K, Zhu Y P, Miao Y L, et al. SSR marker diversity of newly developed soybean breeding lines from Huang-Huai-Hai Region[J]. Soybean Science, 2018, 37(2): 173-178.)[9]王泽立, 王鲁昕, 戴景瑞, 等. 运用近等基因系(NIL)、AFLP、RFLP和SCAR标记对玉米S组育性恢复基因(Rf3)的研究[J]. 遗传学报, 2001, 28(5): 465-470. (Wang Z L, Wang L X, Dai J R, et al. Molecular identification and mapping of a maize gene(Rf3) in S-type CMS using AFLP, RFLP and SCAR techniques[J]. Journal of Genetics and Genomics, 2001, 28(5): 465-470.)[10]柳李旺, 龚义勤, 黄浩, 等. 新型分子标记——SRAP与TRAP及其应用[J]. 遗传, 2004, 26(5): 777- 781. (Liu L W, Gong Y Q, Huang H, et al. Novel molecular marker systems—SRAP and TRAP and their application[J]. Hereditas, 2004, 26(5): 777-781.)[11]Zhou L, Liu T, Cheng Y K, et al. Molecular mapping of a stripe rust resistance gene in Chinese wheat landrace “Hejiangyizai” using SSR, RGAP, TRAP, and SRAP markers[J]. Crop Protection, 2017, 94:178-184.[12]金梦阳, 刘列钊, 付福友, 等. 甘蓝型油菜SRAP、SSR、AFLP和TRAP标记遗传图谱构建[J]. 分子植物育种, 2006(4): 520-526. (Jing M Y, Liu L Z, Fu F Y, et al. Construction of genetic linkage map in Brassica napus based on SRAP, SSR, AFLP and TRAP[J]. Molecular Plant Breeding, 2006(4): 520-526.)[13]金梦阳, 李加纳, 付福友, 等. 甘蓝型油菜含油量及皮壳率的QTL分析[J]. 中国农业科学, 2007, 40(4): 677-684. (Jing M Y, Li J N, Fu F Y, et al. QTL analysis of oil and hull hontent in Brassica napus L[J]. Scientia Agricultural Sinica, 2007, 40(4): 677-684.)[14]Kumar Y, Kwon S J, Coyne C J , et al. Target region amplification polymorphism (TRAP) for assessing genetic diversity and marker-trait associations in chickpea (Cicer arietinum L.) germplasm[J]. Genetic Resources and Crop Evolution, 2014, 61(5): 965-977. [15]Hu J, Seiler G J, Jan CC, et al. Assessing genetic variability among sixteen perennial Helianthus species using PCR based trap markers[C]. Fargo ND: Proceedings 25th Sunflower Search Workshop, 2003.[16]Jan C C, Feng J, Seiler G J, et al. Amphiploids of perennial Helianthus species x cultivated Sunflower possess valuable genes for resistance to Sclerotinia Stem and Head Rot[C]. Fargo ND: Proceedings 25th Sunflower Research Workshop, 2006.[17]高晓玲, 吴慧, 陈琪, 等. 黄淮海和南方大豆育成品种的目标起始密码子(SCoT)遗传多样性分析[J]. 大豆科学, 2016, 35(5): 717-722. (Gao X L, Wu H, Chen Q, et al. Study on genetic diversity of Huang-Huai-Hai and Southern soybean cultivars by SCoT markers[J]. Soybean Science, 2016, 35(5): 717-722.)[18]吴慧, 高晓玲 陈琪, 等. 基于EST-SSR标记的黄淮海和南方大豆育成品种遗传多样性研究[J]. 大豆科学, 2017, 36(3): 7-14. (Wu H, Gao X L, Chen Q, et al. Genetic diversity of soybean cultivar released based on EST-SSR marker[J]. Soybean Science, 2017, 36(3): 7-14.)[19]Mcgregor C E, Lambert C A, Greyling M M, et al. A comparative assessment of DNA fingerprinting techniques (RAPD, ISSR, AFLP and SSR) in tetraploid potato (Solanum tuberosum L.) germplasm[J]. Euphytica, 2000, 113(2): 135-144.[20]Kwon S, Hu J, Coyne C J. Genetic diversity and relationship amongFaba bean(Vicia Faba L.) germplasm entries as revealed by TRAP markers[J]. Plant Genetic Resources, 2010, 8(3): 204-213.[21]张吉清. 大豆对疫病的抗性评价、抗病基因挖掘及候选基因分析[D]. 北京: 中国农业科学院, 2013. (The evaluation of the phytophthora resistance in soybean cultivars, mining and analysis of the Rps candidate gene[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013.)[22]Miklas P N, Hu J, Grünwald N J, et al. Potential application of TRAP(Targeted Region Amplified Polymorphism) markers for mapping and tagging disease resistance traits in common bean[J]. Crop Science, 2006, 46(2): 910-916. [23]Hu J, Ochoa O E, Vick B A, et al. Application of the TRAP technique to lettuce(Lactuca sativa L.) genotyping[J]. Euphytica, 2005, 144: 225-235.[24]Hu J, Vick B A. Target region amplification polymorphism: A novel marker technique for plant genotyping[J]. Plant Molecular Biology Reporter, 2003, 21(3): 289-294.[25]Wang Q, Zhang B, Lu Q, Conserved region amplification polymorphism (CoRAP), a novel marker technique for plant genotyping in salvia miltiorrhiza[J]. Plant Molecular Biology Reporter, 2009, 27(2): 139-143.[26]Liu K, Muse SV. PowerMarker: An integrated analysis environment for genetic marker analysis[J]. Bioinformatics, 2005, 21(9): 2128-2129.[27]Letunic I, Bork P: Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees[J]. Nucleic Acids Research, 2016, 44(W1): W242-W245.[28]Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data[J]. Genetics, 2000, 155(2): 945-959.

Memo

Memo:
-
Last Update: 2020-07-14