|Table of Contents|

Effect of Funneliformis mosseae on Bacterial Flora in Continuous Rhizosphere Soil of Soybean(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2020年02期
Page:
277-287
Research Field:
Publishing date:

Info

Title:
Effect of Funneliformis mosseae on Bacterial Flora in Continuous Rhizosphere Soil of Soybean
Author(s):
CUI Xiao-ying12 BAI Li3 GUO Na3 YIN Ji-zhong12 CAI Bai-yan12
(1.College of Life sciences, Heilongjiang University, Harbin 150080, China; 2.Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin 150080, China; 3.Department of Food and Environmental Engineering, Heilongjiang Oriental College, Harbin 150086, China)
Keywords:
Continuous cropping soybean Funneliformis mosseae Soil bacterial flora KEGG function prediction
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2020.02.0277
Abstract:
In order to investigate the effect of arbuscula mycorrhizal fungi (AMF) - Funneliformis Mosseae on the bacterial community in soybean soil after different continuous cropping years, we analyzed the infection rate, bacterial community structure and diversity of AMF after 0,1,3,5 continuous cropping years respectively, and KEGG function prediction was also conducted. And we hoped this study could provides theoretical basis for alleviating soybean continuous cropping obstacle. The results showed that, with the increase of continuous cropping years, the diversity and abundance of bacteria in soybean soil, and the abundance of beneficial bacteria such as Sphingomonas, Gemmatimonas, Bacillus and Nitrobacter were also decreased. Inoculation of F. mosseae not only improved the bacterial diversity in rhizosphere soil, increased the abundance of beneficial bacteria such as Gemmatimonas, Sphingomonas, Nitrospira and Lysobacter, but also improved the functions of amino acid metabolism, signal transduction, membrane transport and carbohydrate metabolism of rhizosphere bacterial community, which significantly alleviated the soybean continuous cropping obstacle.

References:

[1]李天来, 杨丽娟. 作物连作障碍的克服-难解的问题[J]. 中国农业科学, 2016, 49(5): 916-918. (Li T L, Yang L J. Overcoming the crop continuous cropping obstacles-incomprehensible problem[J]. Chinese Agricultural Science, 2016, 49(5): 916-918.)[2]Xiong W, Li Z, Liu H, et al. The effect of long-term continuous cropping of black pepper on soil bacterial communities as determined by 454 pyrosequencing[J]. PLoS One, 2015, 10(8): 1-13.[3]Bai L, Sun H B, Liang R T, et al. ITRAQ proteomic analysis of continuously cropped soybean root inoculated with Funneliformis mosseae[J]. Frontiers in Microbiology, 2019, 10(61): 1-13.[4]陈雪丽. 黑土区连作大豆根际微生物群落特征研究[D]. 哈尔滨: 中国科学院东北地理与农业生态研究所, 2015. (Chen X L. Characteristics of rhizosphere microbial community in continuous cropping of soybean in black soil region[D]. Harbin: Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, 2015.)[5]Chen X, Wang Y, Li W, et al. Impact of long-term continuous soybean cropping on ammonia oxidizing bacteria communities in therhizosphere of soybean in northeast China[J]. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 2015, 65(5): 470-478.[6]王晋莉. 大豆连作条件下的根际细菌与氨氧化微生物群落特征及其影响因素[D]. 北京: 中国农业大学, 2014: 1-87. (Wang J L. Characteristics of rhizosphere bacteria and ammonia-oxidizing microbial community under soybean continuous cropping and its influencing factors[D]. Beijing: China Agricultural University, 2014: 1-87.)[7]刘小龙, 马建江, 管吉钊, 等. 连作对棉田土壤枯、黄萎病菌数量及细菌群落的影响[J]. 棉花学报, 2015, 27(1): 62-70. (Liu X L, Ma J J, Guan J Z, et al. Effects of continuous cropping on the quantity and bacterial community of Fusarium and Verticillium dahliae in cotton soil[J]. Cotton Journal, 2015, 27(1): 62-70.)[8]殷继忠, 李亮, 接伟光,等. 连作对大豆根际土壤细菌菌群结构的影响[J]. 生物技术通报, 2018, 34(1): 230-238. (Yin J Z, Li L, Jie W G, et al. Effects of continuous cropping on bacterial flora structure of soybean rhizosphere soil[J]. Biotechnology Bulletin, 2018, 34(1): 230-238.)[9]高群, 孟宪志, 于洪飞. 连作障碍原因分析及防治途径研究[J]. 山东农业科学, 2006(3): 66-69. (Gao, Q, Meng X Z, Yu H F. Analysis of causes of continuous cropping obstacle and research on prevention and treatment ways[J]. Shandong Agricultural Sciences, 2006(3): 66-69.)[10]Xu H W , Shao H B, Lu Y. Arbuscular mycorrhiza fungi and related soil microbial activity drive carbon mineralization in the maize rhizosphere[J]. Ecotoxicology and Environmental Safety,2019, 182: 1-7.[11]唐艳领, 李杰, 蔡毓新, 等. 丛枝菌根真菌对连作黄瓜根际土壤的影响[J]. 中国瓜菜, 2018, 31(2): 15-18. (Tang Y L, Li J, Cai Y X, et al. Effects of arbuscular mycorrhizal fungi on rhizosphere soil of cucumber[J]. China Cucurbits and Vegetables, 2018, 31(2): 15-18.)[12]戴梅, 王洪娴, 殷元元, 等. 丛枝菌根真菌与根围促生细菌相互作用的效应与机制[J]. 生态学报, 2008, 28(6): 2854-2860. (Dai M, Wang H X, Yin Y Y, et al. Effects and mechanisms of interaction between arbuscular mycorrhizal fungi and root-promoting bacteria[J]. Chinese Journal of Ecology, 2008, 28(6): 2854-2860.)[13]Bruno A,Sandionigi A, Galimberti A, et al. One step forwards for the routine use of high-throughput DNA sequencing in environmental monitoring. An efficient and standardizable method to maximize the detection of environmental bacteria[J]. Microbiology Open, 2017, 6(1): 1-9.[14]Lou J, Yang L, Wang H, et al. Assessing soil bacterial community and dynamics by integrated high-throughput absolute abundance quantification[J]. Peer Journal, 2018, 6(3): 1-16.[15]Qu L, Huang Y, Zhu C, et al. Rhizobia-inoculation enhances the soybean’s tolerance to salt stress [J]. Plant and Soil, 2016, 400(1-2): 209-220.[16]Kong H H, Conlan S, Grice E A, et al. Topographical and temporal diversity of the human skin microbiome[J]. Science, 2009, 324(5931): 1190-1192.[17]Wang Q,Garrity G M, Tiedje J M, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology, 2007, 73(16): 5261-5267.[18]Caporaso J G, Kuczynski J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5): 335-336.[19]Parks D H, Tyson G W,Hugenholtz P, et al. Stamp: Statistical analysis of taxonomic and functional profiles[J]. Bioinformatics, 2014, 30(21): 3123-3124.[20]林茂兹, 王海斌, 林辉锋. 太子参连作对根际土壤微生物的影响[J]. 生态学杂志, 2012, 31(1): 106-111. (Lin M Z, Wang H B, Lin H F. Effects of radix Pseudostellaria heterophylla continuous cropping on rhizosphere soil microorganisms[J]. Chinese Journal of Ecology, 2012, 31(1): 106-111.)[21]刘晔, 姜瑛, 王国文. 不同连作年限对植烟土壤理化性状及微生物区系的影响[J]. 中国农学通报, 2016, 32(13): 136-140. (Liu Y, Jiang Y, Wang G W. Effects of different continuous cropping years on physical and chemical properties and microflora of tobacco growing soil[J]. Chinese Agricultural Science Bulletin, 2016, 32(13): 136-140.)[22]李倩, 袁玲, 杨水平, 等. 连作对黄花蒿生长及土壤细菌群落结构的影响[J]. 中国中药杂志, 2016, 41 (10): 1803-1810. (Li Q, Yuan L, Yang S P. et al. Effects of continuous cropping on the growth of Artemisia annua L. and soil bacterial community structure[J]. Chinese Journal of Traditional Chinese Medicine, 2016, 41(10): 1803-1810.)[23]Panthee S, Hamamoto H, Paudel A, et al. Lysobacter, species: A potential source of novel antibiotics[J]. Archives of Microbiology, 2016, 198(9): 839-845.[24]Raimam M P, Albino U, Cruz M F, et al. Interaction among free-living N-fixing bacteria isolated from Drosera villosa var. villosa and AM fungi (Glomus clarum) in rice (Oryza sativa)[J]. Applied Soil Ecology, 2007, 35(1): 25-34.[25]Liu X, Li Y J,Ren X J, et al. Long-term greenhouse cucumber production alters soil bacterial community structure[J]. Journal of Soil Science and Plant Nutrition, 2019, 182(5): 1-16.[26]孙秀秀, 贺超兴, 李衍素, 等. AM真菌对黄瓜根围土壤微生物群落功能的影响[J]. 菌物学报, 2017, 36(7): 892-903. (Sun X X, He C X, Li Y S, et al. Effects of AM fungi on soil microbial community function in cucumber roots[J]. Journal of the Chinese Journal of Fungi, 2017, 36(7): 892-903.)[27]谢宏鑫, 刘润进, 孙吉庆, 等. AMF与嫁接对西瓜连作土壤理化和微生物状况的影响[J]. 菌物学报, 2018, 179(5): 89-96. (Effects of AMF and grafting on soil physical and chemical status and microbial status in continuous cropping of watermelon[J]. Journal of Fungal Science, 2018, 179(5): 89-96.)[28]Gómez E R, Joeke P, Raaijmakers J M, et al. Diversity and activity of lysobacter species from disease suppressive soils[J]. Frontiers in Microbiology, 2015, 6(1243): 1-13.[29]Miransari M. Interactions between arbuscular mycorrhizal fungi and soil bacteria[J]. Applied Microbiology and Biotechnology, 2011, 89(4): 917-930.[30]Toljander J F, Paul L R, et al. Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure [J]. FEMS Microbiology Ecology, 2007, 61(2): 295-304.[31]Johansson J F, Paul L R, Finlay R D. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture[J]. FEMS Microbiology Ecology, 2004, 48(1): 1-13.

Memo

Memo:
-
Last Update: 2020-06-10