|Table of Contents|

Research Progress in Functions of Soybean MicroRNAs(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2019年06期
Page:
986-994
Research Field:
Publishing date:

Info

Title:
Research Progress in Functions of Soybean MicroRNAs
Author(s):
LIU Jun-cheng WANG Fang FENG Chen TANG Xiao-zhi SHEN Xin-chun
(Food Science and Engineering College, Nanjing University of Finance and Economics/Collaborative Innovation Center of Modern Grain Circulation and Security of Jiangsu Province/Key Laboratory of Grain and Oil Quality and Safety Control and Deep Processing of Universities in Jiangsu Province, Nanjing 210023, China)
Keywords:
Soybean miRNAs Growth and development Stress Endogenous regulation Cross-kingdom regulation
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2019.06.0986
Abstract:
MicroRNAs(miRNAs) are a group of non-coding small RNAs consisting of 19-24 nucleotides, which are highly conserved in evolution and can regulate genes at the post-transcriptional level. MicroRNAs(miRNAs) are involved in growth and development, nutrient synthesis, biotic stress and abiotic stress via regulating endogenous gene expression in soybean. Due to the high similarity of the biosynthesis and mechanism of miRNAs between plants and animals, the high stability and bioavailability of soybean miRNAs allow its being applied cross-species interactions between two species, which was considered as cross-kingdom regulations. In this review, we discussed the endogenous regulations and cross-kingdom regulations of soybean miRNAs and its potential applications, which provide the theoretical basis for its applications in improving the quality, nutritional values and yield of soybean as well as the human healthy.

References:

[1]Wagner A E, Piegholdt S, Ferraro M, et al. Food derived microRNAs[J]. Food & Function, 2015, 6(3): 714-718.[2]Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5): 843-854.[3]Lagosquintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs[J]. Science, 2001, 294(5543): 853-858.[4]Lau N C, Lim L P, Weinstein E G, et al. An abundant class of tiny RNAs with probable regulatory roles in C. elegans[J]. Science, 2001, 294(5543): 858-862.[5]Lee R C, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans[J]. Science, 2001, 294(5543): 862-864.[6]Llave C, Carrington J C. Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA[J]. Science, 2002, 297(5589): 2053-2056.[7]Reinhart B J, Weinstein E G, Rhoades M W, et al. MicroRNAs in plants[J]. Genes Development, 2002, 16(13):1616-1626.[8]Zhang L, Hou D, Chen X, et al. Exogenous plant miR168a specifically targets mammalian LDLRAP1: Evidence of cross-kingdom regulation by microRNA[J]. Cell Research, 2012, 22(1): 107-126.[9]Cai Z, Wang Y, Zhu L, et al. GmTIR1/GmAFB3-based auxin perception regulated by miR393 modulates soybean nodulation[J]. New Phytologist, 2017, 215(2): 672-686.[10]Subramanian S, Fu Y, Sunkar R, et al. Novel and nodulation-regulated microRNAs in soybean roots[J]. BMC Genomics, 2008, 9(1): 160-174.[11]Llave C, Xie Z X, Kasschau K D, et al. Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA[J]. Science, 2002, 297(5589): 2053-2056.[12]Guo H, Xie Q, Fei J, et al. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to down regulate auxin signals for Arabidopsis lateral root development[J]. Plant Cell, 2005, 17(5): 1376-1386.[13]Carlsbecker A, Lee J Y, Roberts C J, et al. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate[J]. Nature, 2010, 465(7296): 316-321.[14]Combier J P, Frugier F, de Billy F, et al. MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula[J]. Genes & Development, 2006, 20(22): 3084-3088.[15]Wang Y, Li K, Chen L, et al. MicroRNA167-directed regulation of the auxin response factors GmARF8a and GmARF8b is required for soybean nodulation and lateral root development[J]. Plant Physiology, 2015, 168(3): 984-999.[16]李小平, 曾庆发, 张根生, 等. 大豆microRNA基因GmMIR160A负调控植物叶片衰老进程[J]. 广西植物, 2015, 35(1): 84-91. (Li X P, Zeng Q F, Zhang G S, et al. GmMIR160A, a class of soybean microRNA gene, negatively regulates progress of leaf senescence[J]. Guihaia, 2015, 35(1): 84-91.)[17]Aukerman M J, Sakai H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-Like target genes[J]. Plant Cell, 2003, 15(11): 2730-2741.[18]Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development[J]. Science, 2004, 303(5666): 2022-2025.[19]Zhu Q H, Helliwell C A. Regulation of flowering time and floral patterning by miR172[J]. Journal of Experimental Botany, 2011, 62(2):487-495.[20]Wang T, Sun M Y, Wang X S, et al. Over-expression of GmGIa-regulated soybean miR172a confers early flowering in transgenic Arabidopsis thaliana[J]. International Journal of Molecular Sciences, 2016, 17(5): 645-653.[21]Gyula P, Baksa I, Tóth T, et al. Ambient temperature regulates the expression of a small set of sRNAs influencing plant development through NF-YA2 and YUC2[J]. Plant, Cell & Environment, 2018, 16(5): 356-371.[22]Li W, Wang T, Zhang Y, et al. Overexpression of soybean miR172c confers tolerance to water deficit and salt stress, but increases ABA sensitivity in transgenic Arabidopsis thaliana[J]. Journal of Experimental Botany, 2016, 67(1): 175-194.[23]Kulcheski F R, Molina L G, Da F G, et al. Novel and conserved microRNAs in soybean floral whorls[J]. Gene, 2016, 575(2): 213-223.[24]Sun Z, Su C, Yun J, et al. Genetic improvement of the shoot architecture and yield in soybean plants via the manipulation of GmmiR156b[J]. Plant Biotechnology Journal, 2019, 17(1): 50-62.[25]Gupta O P, Nigam D, Dahuja A, et al. Regulation of isoflavone biosynthesis by miRNAs in two contrasting soybean genotypes at different seed developmental stages[J]. Frontiers in Plant Science, 2017, 8: 567-583.[26]Wong J, Gao L, Yang Y, et al. Roles of small RNAs in soybean defense against Phytophthora sojae infection[J]. The Plant Journal, 2014, 79(6): 928-940.[27]Ye C Y, Xu H, Shen E H, et al. Genome-wide identification of non-coding RNAs interacted with microRNAs in soybean[J]. Frontiers in Plant Science, 2014, 5: 743-753.[28]Gou J Y, Felippes F F, Liu C J, et al. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor[J]. Plant Cell, 2011, 23(4):1512-1522.[29]Sindhu A S, Maier T R, Mitchum M G, et al. Effective and specific in planta RNAi in cyst nematodes: Expression interference of four parasitism genes reduces parasitic success[J]. Journal of Experimental Botany, 2008, 60(1): 315-324.[30]Xu M, Li Y, Zhang Q, et al. Novel miRNA and phasiRNA biogenesis networks in soybean roots from two sister lines that are resistant and susceptible to SCN race 4[J]. PLoS One, 2014, 9(10): 110-119.[31]Li X, Wang X, Zhang S, et al. Identification of soybean microRNAs involved in soybean cyst nematode infection by deep sequencing[J]. PLoS One, 2012, 7(6): 1-10.[32]Cui X, Yan Q, Gan S, et al. Overexpression of gma-miR1510a/b suppresses the expression of a NB-LRR domain gene and reduces resistance to Phytophthora sojae[J]. Gene, 2017, 621: 32-39.[33]Mchale L, Tan X, Koehl P, et al. Plant NBS-LRR proteins: Adaptable guards[J]. Genome Biology, 2006, 7(4): 1-11.[34]郭娜, 崔晓霞, 赵晋铭, 等. 大豆疫霉根腐病相关miRNA的鉴定[J].大豆科学, 2015, 34(4): 666-670. (Guo N, Cui X J, Zhao J M, et al. Identification of miRNA resistant to phytophthora root rot in soybean[J]. Soybean Science, 2015, 34(4): 666-670.)[35]Yin X, Wang J, Cheng H, et al. Detection and evolutionary analysis of soybean miRNAs responsive to soybean mosaic virus[J]. Planta, 2013, 237(5): 1213-1225.[36]Jossey S. Role of virus genes in seed and aphid transmission and development of a virus-induced gene silencing system to study seed development in soybean[J]. Dissertations & Theses-Gradworks, 2012, 38(3): 28-34.[37]Liu W C, Zhou Y G, Li X W, et al. Tissue-specific regulation of gma-miR396 family on coordinating development and low water availability responses[J]. Frontiers in Plant Science, 2017, 8: 1112.[38]张彦琴, 董春林, 杨丽莉, 等. 大豆抗旱品种响应干旱胁迫的分子机理[J]. 基因组学与应用生物学, 2016, 35(12): 3514-3520. (Zhang Y Y, Dong C L, Yang L L, et al. Molecular mechanism of drought-resistant soybean variety[J]. Genomics and Applied Biology, 2016, 35(12): 3514-3520.) [39]Ni Z, Hu Z, Jiang Q, et al. Overexpression of gma-miR394a confers tolerance to drought in transgenic Arabidopsis thaliana[J]. Biochemical and Biophysical Research Communications, 2012, 427(2): 330-335.[40]贾琪, 孙松, 孙天昊, 等. F-box蛋白家族在植物抗逆响应中的作用机制[J]. 中国生态农业学报, 2018, 166(8): 39-50. (Jia Q, Sun S, Sun T H, et al. Mechanism of F-box protein family in plant resistance response to environmental stress[J]. Chinese Journal of Eco-Agriculture, 2018, 166(8): 39-50.)[41]徐妙云, 朱佳旭, 张敏, 等. 植物miR169/NF-YA调控模块研究进展[J]. 遗传, 2016, 38(8): 700-706. (Xu M Y, Zhu J X, Zhang M, et al. Advances on plant miR169/NF-YA regulation modules[J]. Hereditas, 2016, 38(8): 700-706.)[42]Ni Z, Hu Z, Jiang Q, et al. GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress[J]. Plant Molecular Biology, 2013, 82(1-2): 113-129.[43]王兴超. 大豆miR1510a的表达分析及功能验证[D]. 长春: 吉林农业大学, 2016. (Wang X C. Expression and functional analysis of soybean miR1510a[D]. Changchun: Jilin Agricultural University, 2016.)[44]Htwe N M P S. 大豆逆境胁迫诱导的miRNA鉴定及功能分析[D]. 北京: 中国农业科学院, 2015. (Htwe N M P S. Identification of stress induced miRNAs and their functional analysis in soybean[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015.)[45]Huang S C, Lu G H, Tang C Y, et al. Identification and comparative analysis of aluminum-induced microRNAs conferring plant tolerance to aluminum stress in soybean[J]. Biologia Plantarum, 2017, 62(1): 97-108.[46]Fang X L, Zhao Y Y, Ma Q B, et al. Identification and comparative analysis of cadmium tolerance-associated miRNAs and their targets in two soybean genotypes[J]. PLoS One, 2013, 8(12): 1-13.[47]张路, 王利华, 桂和荣, 等. 土壤重金属胁迫与植物相关miRNA的研究进展[J]. 北方园艺, 2017, 41(18): 180-185. (Zhang L, Wang L H, Gui H R, et al. Progress on the soil heavy metal stress and associated miRNA of plant[J]. Northern Horticulture, 2017, 41(18): 180-185.)[48]Noman A, Aqeel M. miRNA-based heavy metal homeostasis and plant growth[J]. Environmental Science & Pollution Research, 2017, 24(11): 10068-10082.[49]王丽丽, 赵统利, 葛金涛, 等. 植物低温胁迫响应miRNAs在植物抗寒研究中的应用前景[J]. 上海农业学报, 2017(6):129-134. (Wang L L, Zhao T L, Ge J T, et al. Application prospects of plant cold-stress-responsive miRNA in cold resistance research of plants[J]. Acta Agriculturae Shanghai, 2017(6): 129-134.)[50]李永光, 艾佳, 王涛, 等. 大豆gma-miR1508a靶基因预测及功能分析[J]. 大豆科学, 2014, 33(4): 483-487. (Li Y G, Ai J, Wang T, et al. The target genes prediction and analysis of gma-miR1508a[J]. Soybean Science, 2014, 33:483-487.)[51]倪志勇, 于月华, 任燕萍, 等. 大豆gma-miR1508a靶基因鉴定及植物表达载体构建[J]. 大豆科学, 2015, 34(6):1090-1092. (Ni Z Y, Yu Y H, Ren Y P, et al. Validation of selected gma-miR1508a targets and construction of its plant expression vectors[J]. Soybean Science, 2015, 34(6): 1090-1092.)[52]Zhang S, Wang Y, Li K, et al. Identification of cold-responsive miRNAs and their target genes in nitrogen-fixing nodules of soybean[J]. International Journal of Molecular Sciences, 2014, 15(8): 13596-13614. [53]吕春雨, 沙爱华. 大豆microRNA168调控植物低磷胁迫响应[J]. 中国油料作物学报, 2017, 39(3):321-325. (Lyu C Y, Sha A H. Response to phosphorus deficiency regulated by microRNA168 in soybean plant[J]. Chinese Journal of Oil Crop Sciences, 2017, 39(3):321-325.)[54]Xu F, Liu Q, Chen L, et al. Genome-wide identification of soybean microRNAs and their targets reveals their organ-specificity and responses to phosphate starvation[J]. BMC Genomics, 2013, 14(1): 66-95.[55]王业建. 大豆对低氮胁迫的形态和生理学响应及介导低氮胁迫miRNA的鉴定[D]. 长沙: 中南大学, 2013. (Wang Y J. Morphological and biological responses of different soybean varieties to low nitrogen and identification of low nitrogen regulated miRNA[D]. Changsha: Central South University, 2013.)[56]Dziedzic M, Powrózek T, Orowska E, et al. Relationship between microRNA-146a expression and plasma renalase levels in hemodialyzed patients[J]. PLoS One, 2017, 12(6): 157-163.[57]汪劼. 闯入动物王国的植物miRNA[J]. 生命的化学, 2016(3): 404-408. (Wang J. Plant miRNAs that break into the animal kingdom[J]. Chemistry of Life, 2016, 3: 404-408.)[58]Anna P, Ferro V A, Tate R J. Determination of the potential bioavailability of plant microRNAs using a simulated human digestion process[J]. Molecular Nutrition & Food Research, 2015, 59(10): 1962-1972.[59]Liu Y C, Chen W L, Kung W H, et al. Plant miRNAs found in human circulating system provide evidences of cross kingdom RNAi[J]. BMC Genomics, 2017, 18(2 suppl.): 112-117.[60]Chin A R, Fong M Y, Somlo G, et al. Cross-kingdom inhibition of breast cancer growth by plant miR159[J]. Cell Research, 2016, 26(2): 217-228.[61]Lukasik A, Zielenkiewicz P. In silico identification of plant miRNAs in mammalian breast milk exosomes-a small step forward[J]. PLoS One, 2014, 9(6): 83-94.[62]Zhen Z, Li X, Liu J, et al. Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses[J]. Cell Research, 2015, 25(1): 39-49.[63]Teng Y, Ren Y, Sayed M, et al. Plant-derived exosomal microRNAs shape the gut microbiota[J]. Cell Host & Microbe, 2018, 24(5): 637-652.[64]Hou D, He F, Ma L, et al. The potential atheroprotective role of plant miR156a as a repressor of monocyte recruitment on inflamed human endothelial cells[J]. Journal of Nutritional Biochemistry, 2018, 57(15): 197-205.[65]Tian Y, Cai L, Tian Y, et al. miR156a mimic represses the epithelial-mesenchymal transition of human nasopharyngeal cancer cells by targeting junctional adhesion molecule A[J]. PLoS One, 2016, 11(6): 1-21.[66]潘峰. 植物miRNA-168a跨界调控人基因表达再分析[D]. 泉州: 华侨大学, 2016. (Pan F. A step further analysis of cross-kingdom regulation of miRNA-168a in human cells[D]. Quanzhou: Huaqiao University, 2016.)

Memo

Memo:
-
Last Update: 1900-01-01