|Table of Contents|

Research Progress of Plant Alkali Tolerance and Its Application Prospect in Soybean(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2019年06期
Page:
977-985
Research Field:
Publishing date:

Info

Title:
Research Progress of Plant Alkali Tolerance and Its Application Prospect in Soybean
Author(s):
REN Peng-fei12 SHANG Li-xia1 CAI Qin-an1 YU Zhi-jing1 MA Rui1
(1.Agro-Biotechnology Research Institute/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China; 2.College of Agronomy, Jilin Agricultural University, Changchun 130118, China)
Keywords:
Plant Alkaline stress Soybean Salt-tolerant Genes
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2019.06.0977
Abstract:
Soil salinization is one of the main constraints in agricultural production. The improvement and utilization of saline-alkali soil is a worldwide problem. Alkaline soil with high pH value and high exchangeable Na+ content(ESP), compared with saline soil, is difficult to improve. Soybean is an important cash and oil crop. Alkali stress has a negative impact on the whole growth period of soybean by affecting the growth, podding and ultimately decreases the yield. This paper reviewed the hazards of alkali stress on plants, the mechanism of plant alkali resistance, the genetic mechanism of plant alkali resistance and its application prospects in soybean. It will provide theoretical support for studying regulation mechanism of plant response to alkali stress, excavating plant alkali-tolerant genes, improving soil quality in saline-alkali soils, selecting alkali-tolerant soybean varieties, and increasing soybean yield.

References:

[1]俞仁培, 陈德明. 我国盐渍土资源及其开发利用[J]. 土壤通报, 1999, 30(4): 158-159. (Yu R P, Chen D M. Saline soil resources development and utilization in China[J]. Chinese Journal of Soil Science, 1999, 30(4): 158-159.)[2]胡一, 韩霁昌, 张扬. 盐碱地改良技术研究综述[J]. 陕西农业科学, 2015, 61(2): 67-71. (Hu Y, Han J C, Zhang Y. Review of research on saline-alkali land improvement technology[J]. Shanxi Journal of Agricultural Sciences, 2015, 61(2): 67-71.)[3]咸金山. 中国古代对盐碱土发生发展规律的认识[J]. 中国农史, 1991, 11(1): 70-77. (Xian J S. Understanding of the occurrence and development of saline-alkali soil in ancient China[J]. Agricultural History of China, 1991, 11(1): 70-77.)[4]Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress: Achievements and limitations[J]. Current Opinion in Biotechnology, 2005, 16(2): 123-132.[5]杨劲松. 中国盐渍土研究的发展历程与展望[J]. 土壤学报, 2008, 45(5): 837-845. (Yang J S. Development and prospect of the research on salt-affected soils in China[J]. Acta Pedologica Sinica, 2008, 45(5): 837-845.)[6]王佳丽, 黄贤金, 钟太洋, 等. 盐碱地可持续利用研究综述[J]. 地理学报, 2011, 66(5): 673-684. (Wang J L, Huang X J, Zhong T Y, et al. Review on sustainable utilization of salt-affected land[J]. Acta Geographica Sinica, 2011, 66(5): 673-684.)[7]邓绍云, 邱清华. 中国盐碱土壤修复研究综述[J]. 北方园艺, 2011, 35(22): 171-174. (Deng S Y, Qiu Q H. Synthetic study on restoration to alkali-saline soil in China[J]. Northern Horticulture, 2011, 35(22): 171-174.)[8]赵文祥, 黎香兰, 张颖, 等. 我国大豆抗性育种研究进展及发展趋势[J]. 山东农业大学学报(自然科学版), 1998, 29(1): 117-122. (Zhao W X, Li X L, Zhang Y, et al. Development and prospects of soybean resistance breeting in China[J]. Journal of Shandong Agricultural University(Natural Science Edition), 1998, 29(1): 117-122.)[9]邵桂花. 大豆种质资源耐盐性田间鉴定方法[J]. 作物杂志, 1986, 2(3): 36-37. (Shao G H. Field identification method for salt tolerance of soybean[J]. Crops, 1986, 2(3): 36-37.)[10]邵桂花, 宋景芝, 刘惠令. 大豆种质资源耐盐性鉴定初报[J]. 中国农业科学, 1986, 27(6): 30-35. (Shao G H, Song J Z, Liu H L. Preliminary studies on the evaluation of salt tolerance in soybean varieties[J]. Scientia Agricultura Sinica, 1986, 27(6): 30-35.)[11]邵桂花. 耐盐大豆品种的分布与盐渍土的关系[J]. 作物杂志, 1988, 4(2): 34-36. (Shao G H. The study on the relationship of salt-tolerance cultivars of soybean and saline-alkali soil[J]. Crops, 1988, 4(2): 34-36.)[12]马淑时, 王伟. 大豆品种资源的抗盐碱性研究[J]. 吉林农业科学, 1994, 35(4): 69-71. (Ma S S, Wang W. The study on salt and alkaline resistance evaluation of different soybean varieties[J]. Journal of Northeast Agricultural Sciences, 1994, 35(4): 69-71.)[13]罗教芬. 大豆种质资源抗盐碱鉴定[J]. 大豆科学, 1993, 12(1): 89. (Luo J F. salt and alkaline resistance evaluation of soybean gerplasm[J]. Soybean Science, 1993, 12(1): 89.)[14]李星华, 陈宛妹, 李增禄. 山东大豆种质资源耐盐性鉴定[J]. 山东农业科学, 1996, 34(4): 11-13. (Li X H, Chen W M, Li Z L. Appraisal of salt tolerance of soybean gerplasm in Shandong province[J]. Shandong Agricultural Sciences, 1996, 34(4): 11-13.)[15]潘瑞梅. 冀东滨海地区耐盐碱大豆品种的筛选[J]. 安徽农学通报, 2007, 13(7): 158-159. (Pan R M. Appraisal of salt and alkaline tolerance of soybean gerplasm in east of Hebei province[J]. Anhui Agricultural Science Bulletin, 2007, 13(7): 158-159.)[16]那桂秋, 寇贺, 曹敏建. 不同大豆品种种子萌发期耐盐碱性鉴定[J]. 大豆科学, 2009, 28(2): 352-356. (Na G Q, Kou H, Cao M J. Salt and alkaline tolerance evaluation of different soybean varieties at germination stage[J]. Soybean Science, 2009, 28(2): 352-356.)[17]Zhu J K. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology, 2002, 53: 247-273. [18]楚乐乐, 罗成科, 田蕾, 等. 植物对碱胁迫适应机制的研究进展[J]. 植物遗传资源学报,2019,20(4):836-844. (Chu L L, Luo C K, Tian L, et al. Research advance in plants, adaptation to alkali stress[J/OL]. Journal of Plant Genetic Resources, 2019,20(4):836-844.)[19]王英, 张国民, 李景鹏, 等. 寒地粳稻耐碱研究进展及开发前景[J]. 作物杂志, 2016, 32(6): 1-8. (Wang Y, Zhang G M, Li J P, et al. Advances in alkaline tolerance of japonica rice in cold zone[J]. Crops, 2016, 32(6): 1-8)[20]Parul P, Samiksha S, Rachana S, et al. Effect of salinity stress on plants and its tolerance strategies: A review[J]. Environmental Science & Pollution Research, 2015, 22(6): 4056-4075.[21]易善军, 孙振元, 韩蕾, 等. 植物耐碱机理及相关基因研究进展[J]. 世界林业研究, 2011, 24(1): 28-32. (Yi S J, Sun Z Y, Han L, et al. Research advance on alkali-resistant mechanism of plants and related genes[J]. World Forestry Research, 2011, 24(1): 28-32.)[22]石德成, 殷立娟. 盐(NaCl)与碱(Na2CO3)对星星草胁迫作用的差异[J]. Journal of Integrative Plant Biology, 1993, 35(2): 144-149. (Shi D C, Yin L J. Difference between salt(NaCl) and alkaine(Na2CO3) stresses on Puccinellia tenuflora(Griseb.) Scribn. et Merr. plants[J]. Journal of Integrative Plant Biology, 1993, 35(2): 144-149.)[23]Rui G, Shi L X, Yang Y F. Germination, growth, osmotic adjustment and ionic balance of wheat in response to saline and alkaline stresses[J]. Soil Science & Plant Nutrition, 2010, 55(5): 667-679.[24]Guo R, Yang Z, Li F, et al. Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress[J]. BMC Plant Biology, 2015, 15(1): 170-183.[25]Dodd G L, Donovan L A. Water potential and ionic effects on germination and seedling growth of two cold desert shrubs[J]. American Journal of Botany, 1999, 86(8): 1146-1153.[26]邱璐. 藜麦生长初期对盐碱胁迫的生理响应[D]. 长春: 东北师范大学, 2018. (Qiu L. The physiological responses of Chenopodium quinoa Willd. to saline alkaline stress in the early stage of growth[D]. Changchun: Northeast normal University, 2018.)[27]Laghmouchi Y, Belmehdi O, Bouyahya A, et al. Effect of temperature, salt stress and pH on seed germination of medicinal plant Origanum compactum[J]. Biocatalysis & Agricultural Biotechnology, 2017, 10: 156-160. [28]Wang G, Lei W, Xuan M, et al. Effect of saline-alkali stress on seed germination and seedling growth of oat[J]. Plant Diseases & Pests, 2015, 45(2): 437-446.[29]Ma H, Yang H, Lyu X, et al. Does high pH give a reliable assessment of the effect of alkaline soil on seed germination? A case study with Leymus chinensis (Poaceae)[J]. Plant & Soil, 2015, 394(1-2): 35-43.[30]李劲松, 郭凯, 李晓光, 等. 模拟干旱和盐碱胁迫对碱蓬、盐地碱蓬种子萌发的影响[J]. 中国生态农业学报, 2018, 26(7): 1011-1018. (Li J S, Guo K, Li X G, et al. Effects of PEG, NaCl and Na2CO3 stresses on Suaeda glauca and Suaeda salsa seed germination[J]. Chinese Journal of Eco-Agriculture, 2018, 26(7): 1011-1018.)[31]Zhang J T, Mu C S. Effects of saline and alkaline stresses on the germination, growth, photosynthesis, ionic balance and anti-oxidant system in an alkali-tolerant leguminous forage Lathyrus quinquenervius[J]. Soil Science & Plant Nutrition, 2010, 55(5): 685-697.[32]柳小宁, 潘永东, 张华瑜, 等. Na2CO3胁迫对啤酒大麦种子萌发的影响[J]. 甘肃农业科技, 2014, 52(12): 5-8. (Liu X N, Pan Y D, Zhang H Y, et al. Effects of Na2CO3 stress on germination of beer barley seeds[J]. Gansu Agricultural Science and Technology, 2014, 52(12): 5-8)[33]Ge Y, Li Y, Zhu Y M, et al. Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3 treatment[J]. BMC Plant Biol, 2010, 10(1): 153-167.[34]赵楠, 芦艳, 左进城, 等. 碱胁迫对碱蓬种子萌发的影响[J]. 北方园艺, 2012, 36(1): 45-47. (Zhao N, Lu Y, Zuo J C. Effect of alkali stress on germination of Suaeda salsa seeds[J]. Northern Horticulture, 2012, 36(1): 45-47.)[35]颜宏, 赵伟, 盛艳敏, 等. 碱胁迫对羊草和向日葵的影响[J]. 应用生态学报, 2005, 16(8): 1497-1501. (Yan H, Zhao W, Sheng Y M, et al. Effects of alkali-stress on Aneurolepidium chinense and Helianthus annuus[J]. Chinese Journal of Applied Ecology, 2005, 16(8): 1497-1501.)[36]赵海新. 寒地水稻对碱胁迫的响应及鉴定指标评价[D]. 沈阳: 沈阳农业大学, 2012. (Zhao H X. Response of rice to alkali stress in cold region and evaluation of its identification indexes[D]. Shenyang: Shenyang Agricultural University, 2012.)[37]张磊, 侯云鹏, 王立春. 盐碱胁迫对植物的影响及提高植物耐盐碱性的方法[J]. 东北农业科学, 2018, 43(4): 11-16. (Zhang L, Hou Y P, Wang L C. Effects of salt-alkali stress on plants and methods to improve salt-alkali tolerance of plants[J]. Northeast Agricultural Science, 2018, 43(4): 11-16.)[38]Huan W, Zhihai W, Jiayu H, et al. Comparison of ion balance and nitrogen metabolism in old and young leaves of alkali-stressed rice plants[J]. PLoS One, 2012, 7(5): e37817.[39]金微微, 张会慧, 滕志远, 等. 盐碱互作胁迫对高丹草叶片叶绿素荧光参数的影响[J]. 草业科学, 2017, 34(10): 2090-2098. (Jin W W, Zhang H H, Teng Z Y, et al. Effects of saline-alkali interaction stress on the chlorophyll fluorescence in leaves of Sorghum bicolor×S.sudanense[J]. Pratacultural Science, 2017, 34(10): 2090-2098.)[40]杨春武. 虎尾草和水稻抗碱机制研究[D]. 长春: 东北师范大学, 2010. (Yang C W. Mechanisms of alkali tolerance in Chloris virgata and rice (Oryza sativa)[D]. Changchun: Northeast normal University, 2010.)[41]葛瑛, 朱延明, 吕德康, 等. 野生大豆碱胁迫反应的研究[J]. 草业科学, 2009, 26(2): 47-52. (Ge Y, Zhu Y M, Lyu D K, et al. Study on alkali stress response of wild soybean[J]. Pratacultural Science, 2009, 26(2): 47-52.)[42]李蒙蒙. 玉米幼苗对盐碱胁迫响应特征比较及甜菜碱缓解效应研究[D]. 大庆: 黑龙江八一农垦大学, 2013. (Li M M. Response of maize seedlings to salinization stress and its regulation by betaine[D]. Daqing: Heilongjiang Bayi Agricultural University, 2013.)[43]Gao Z W, Han J Y, Mu C S, et al. Effects of saline and alkaline stresses on growth and physiological changes in oat (Avena sativa L.) seedlings[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2014, 42(2): 1918-1929.[44]叶贤文. 会理不同海拔烟叶嗜锇颗粒的分布特征及其与烤烟品质的关系[D]. 郑州: 河南农业大学, 2011. (Ye X W. The distribution characteristics of osmiophilic granules in tobacco leaves at different altitudes and the relationship with quality of flue-cured tobacco leaves of Huili[D]. Zhengzhou: Henan Agricultural University, 2011.)[45]郭立泉. 星星草抗碱生理适应机制的研究[D]. 长春: 东北师范大学, 2009. (Guo L Q. The study of alkali-tolerant metabolism in puccinellia tenuiflora[D]. Changchun: Northeast normal University, 2009.)[46]董丽娟. 不同山定子幼苗耐碱性评价与碱胁迫下有机酸积累的差异机理分析[D]. 杨凌: 西北农林科技大学, 2018. (Dong L J. Alkali tolerance of different Malus baccata accessions and the differences of organic acids accumulation of two accessions under alkali stress[D]. Yangling: Northwest A & F University, 2018.)[47]徐华华. 盐碱胁迫对虎尾草有机酸代谢、光合及荧光特性的影响[D]. 长春: 东北师范大学, 2010. (Xu H H. The responses of organic acid metabolism, photosynthesis and chlorophyⅡ fluorescence in an alkali-tolerant halophyte Chloris virgata under alkali stress and salt stress[D]. Changchun: Northeast Normal University, 2010.)[48]石德成, 尹尚君, 杨国会, 等. 碱胁迫下耐碱植物星星草体内柠檬酸特异积累现象[J]. 西北植物学报, 2002, 44(5): 537-540. (Shi D C, Yin S J, Yang G H, et al. Citric acid accumulation in an alkali-tolerant plant Puccinellia tenuiflora under alkaline stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2002, 44(5): 537-540.)[49]Yang C, Shi D, Wang D. Comparative effects of salt and alkali stresses on growth, osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca (Bge.)[J]. Plant Growth Regulation, 2008, 56(2): 179-190.[50]Yang C, Chong J, Li C, et al. Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions[J]. Plant & Soil, 2007, 294(1-2): 263-276.[51]Guo R, Shi L X, Yang C W, et al. Comparison of ionomic and metabolites response under alkali stress in old and young leaves of cotton (Gossypium hirsutum L.) seedlings[J]. Frontiers in Plant Science, 2016, 7: e1785. [52]王欢. 碱胁迫下水稻氮代谢调节机制[D]. 长春: 东北师范大学, 2013. (Wang H. The regulation mechanism of nitrogen metabolism of rice under alkaline stress[D]. Changchun: Northeast Normal University, 2013.)[53]Guo R, Zhou J, Hao W P, et al. Germination, growth, chlorophyll fluorescence and ionic balance in linseed seedlings subjected to saline and alkaline stresses[J]. Plant Production Science, 2014, 17(1): 20-31.[54]Guo R, Yang Z, Li F, et al. Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress[J]. BMC Plant Biology, 2015, 15(1): 170.[55]麻莹, 曲冰冰, 郭立泉, 等. 盐碱混合胁迫下抗碱盐生植物碱地肤的生长及其茎叶中溶质积累特点[J]. 草业学报, 2007, 16(4): 25-33. (Ma Y, Qu B B, Guo L Q, et al. Growth and solute accumulation in stem and leaf of alkali-resistant plant under salt and alkali mixed stress[J]. Acta Prataculturae Sinica, 2007, 16(4): 25-33.)[56]张衷华. NaHCO3胁迫对烟草的毒害机理研究[D]. 哈尔滨: 东北林业大学, 2011. (Zhang Z H. Comparative toxicity of NaHCO3 and NaCl stress on tabacco (Nicotiana tabacum Linn.)[D]. Harbin: Northeast Forestry University, 2011.)[57]刘铎, 丛日春, 高卫东, 等. 盐碱胁迫对柳树抗氧化酶的影响[J]. 水土保持通报, 2017, 37(5): 53-57. (Liu D, Cong R C, Gao W D, et al. Effects of salt and alkali stresses on antioxidases of willow[J]. Bulletin of Soil and Water Conservation, 2017, 37(5): 53-57.)[58]高剑. 中性盐和碱性盐对龙葵(Solanum nigrum L.)的胁迫作用研究[D]. 牡丹江: 牡丹江师范学院, 2017. (Gao J. Study on the stress effect of neutral salt and alkaline salt on of Solanum nigrum L.[D]. Mudanjiang: Mudanjiang Normal University, 2017.)[59]祝一文, 车永梅, 赵方贵, 等. 碱胁迫下H2S参与活性氧代谢和水稻幼苗生长的调控[J]. 农业生物技术学报, 2018, 26(7): 1124-1131. (Zhu Y W, Che Y M, Zhao F G, et al. H2S functions in growth regulation in rice (Oryza sativa) seedling and metabolism modulating of reactive oxygen under alkaline stress[J]. Journal of Agricultural Biotechnology, 2018, 26(7): 1124-1131.)[60]尤本武. β-氨基丁酸诱导烟草抗碱研究[D]. 北京: 中国科学技术大学, 2017. (You B W. A preliminary study on BABA-induced resistance to alkaline stress in tobacco[D]. Beijing: University of Science and Technology of China, 2017.)[61]吴成龙, 尹金来, 徐阳春, 等. 碱胁迫对菊芋幼苗生长及其光合作用和抗氧化作用的影响[J]. 西北植物学报, 2006, 26(3): 447-454. (Wu C L, Yin J L, Xu Y C, et al. Effects of alkali stress on growth, photosynthesis and antioxidation of Jerusalem artichoke seedlings[J]. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(3): 447-454.)[62]吴晓霞, 高红明, 张彪, 等. 低浓度Na2CO3胁迫下星星草幼苗保护酶活性与活性氧之间的关系[J]. 草业学报, 2004, 13(6): 87-91. (Wu X X, Gao H M, Zhang B, et al. The relationship between the activity of the protective enzyme and active oxygen of the seedling of the star grass under low concentration of Na2CO3 stress[J]. Acta Prataculturae Sinica, 2004, 13(6): 87-91.)[63]韩蕊莲, 李丽霞, 梁宗锁, 等. 干旱胁迫下沙棘膜脂过氧化保护体系研究[J]. 西北林学院学报, 2002, 17(4): 1-5. (Han R L, Li L X, Liang Z S, et al. Study on membrane lipid peroxidation protection system of Hippophae rhamnoides under drought stress[J]. Journal of Northwest Forestry University, 2002, 17(4): 1-5.)[64]吴凤芝, 黄彩红, 赵凤艳. 酚酸类物质对黄瓜幼苗生长及保护酶活性的影响[J]. 中国农业科学, 2002, 35(7): 821-825. (Wu F Z, Huang C H, Zhao F Y. The effect of phenolic acid on the growth and protective enzyme activity of cucumber seedlings[J]. Scientia Agricultura Sinica, 2002, 35(7): 821-825.)[65]张士功, 高吉寅, 宋景芝. 甜菜碱对NaCl胁迫下小麦细胞保护酶活性的影响[J]. 植物学通报, 1999, 16(4): 429-432. (Zhang S G, Gao J Y, Song J Z. Effect of betaine on cell protective enzyme activity of wheat under NaCl stress[J]. Chinese Bulletin of Botany, 1999, 16(4): 429-432.)[66]李洪有, 钟长春, 蔡芳, 等. 甜荞柠檬酸转运蛋白基因FeFRD3的克隆及表达分析[J]. 西北植物学报, 2018, 38(3): 409-415. (Li H Y, Zhong C C, Cai F, et al. Cloning and expression analysis of citric acid transporter gene FeFRD3from Tartary Buckwheat[J]. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(3): 409-415.)[67]才华, 许慧慧, 孙娜, 等. 从光合作用和有机酸积累角度探索转GsPPCK1和GsPPCK3基因苜蓿耐碱性增强的生理机制[J]. 草业学报, 2018, 27(8): 107-117. (Cai H, Xu H H, Sun N, et al. To explore the physiological mechanism of alkaline tolerance in transgenic alfalfa with GsPPCK1and GsPPCK3genes from the perspective of photosynthesis and organic acid accumulation[J]. Acta Prataculturae Sinica, 2018, 27(8): 107-117.) [68]王爽, 徐华祥, 张加凡, 等. 大豆PLMT基因的克隆及在盐、碱胁迫下的表达分析[J]. 分子植物育种, 2018, 16(15): 4824-4828. (Wang S, Xu H X, Zhang J F, et al. Cloning of soybean PLMT gene and expression analysis of it under saline-alkaline stress[J]. Molecular Plant Breeding, 2018, 16(15): 4824-4828.)[69]郑贞贞, 李佳, 叶广继, 等. 马铃薯青薯九号甜菜碱醛脱氢酶基因(StBADH)克隆及进化分析[J]. 分子植物育种, 2017, 15(9): 3417-3427. (Zheng Z Z, Li J, Ye G J, et al. Isolation and evolutional analysis of Stbadh in Qingshu 9 (Solanum tuberosum)[J]. Molecular Plant Breeding, 2017, 15(9): 3417-3427.)[70]钱婵娟. Virgibacillus halodenitrificans PDB-F2甘氨酸甜菜碱转运基因的克隆与渗透胁迫响应[D]. 上海: 华东理工大学, 2018. (Qian C J. Cloning of Virgibacillus halodenitrificans PDB-F2 glycine betaine transport gene and osmotic stress response[D]. Shanghai: East China University of Science and Technology, 2018.)[71]张冰蕾, 舒娜, 崔瑞峰, 等. 棉花GhMGL11基因的克隆和表达分析[J]. 分子植物育种, 2018, 16(16): 5173-5182. (Zhang B L, Shu N, Cui R F, et al. Cloning and expression analysis of cotton GhMGL11gene[J]. Molecular Plant Breeding, 2018, 16(16): 5173-5182.)[72]杨浩, 朱延明. 耐碱GsCHX19基因的克隆及对苜蓿的遗传转化[J]. 作物杂志, 2016(3): 37-44, 175. (Yang H, Zhu Y M. Cloning of alkali-tolerant GsCHX19gene and genetic transformation of alfalfa[J]. Crops, 2016(3): 37-44, 175.)[73]王齐. 小麦转录因子TaNTL5参与盐碱胁迫应答的分子机制研究[D]. 济南: 山东大学, 2018. (Wang Q. Molecular mechanism of wheat transcription factor TaNTL5involved in saline-alkali stress response[D]. Jinan: Shandong University, 2018.)[74]孙雪慧. 耐盐基因ScHAL1和ZmHKT转入大豆的研究[D]. 长春: 长春师范大学, 2018. (Sun X H. Studies on the transfer of salt-tolerant genes ScHAL1and ZmHKT into soybean[D]. Changchun: Changchun normal University, 2018.)[75]卫琳. 小麦盐、碱胁迫应答基因TaWRKY46和TaNRT1. 2的功能研究[D]. 济南: 山东大学, 2018. (Wei L. Wheat salt, alkali stress response gene TaWRKY46and TaNRT1. 2. Functional study[D]. Jinan: Shandong University, 2018.)[76]陈超, 端木慧子, 朱丹, 等. 大豆CML家族基因的生物信息学分析[J]. 大豆科学, 2015, 34(6): 957-963. (Chen C, Duanmu H Z, Zhu D, et al. Bioinformatics analysis of GmCML genes in soybean genome[J]. Soybean Science, 2015, 34(6): 957-963.)[77]张晓美. 大豆GmCKR基因的分离及功能验证[D]. 长春: 吉林农业大学, 2012. (Zhang X M. Isolating and function identifying of GmCKR gene in soybean[D]. Changchun: Jilin Agricultural University, 2012.)[78]柯丹霞, 彭昆鹏, 张孟珂, 等. 大豆GmHDL57基因的克隆及抗盐功能鉴定[J]. 作物学报, 2018, 44(9): 1347-1356. (Ke D X, Peng K P, Zhang M K, et al. Cloning and salt resistance function identification of GmHDL57gene from Glycine max[J]. Acta Agronomica Sinica, 2018, 44(9): 1347-1356.)[79]邓宇, 王骐, 董金晔, 等. 大豆GmPLC2基因的序列分析及表达特性[J]. 吉林农业大学学报, 2016, 38(2): 138-144. (Deng Y, Wang Q, Dong J Y, et al. Sequence analysis and expression characterization of soybean GmPLC2gene[J]. Journal of Jilin Agricultural University, 2016, 38(2): 138-144.)[80]柏锡, 魏彬, 赵静, 等. 大豆GmRLP19基因克隆及胁迫应答模式分析[J]. 东北农业大学学报, 2019, 50(4): 11-18. (Bai X, Wei B, Zhao J, et al. Cloning of soybean GmRLP19gene and analysis of stress response patterns[J]. Journal of Northeast Agricultural University, 2019, 50(4): 11-18.)[81]朱延明, 朱毅, 端木慧子, 等. 大豆GmUGD基因家族生物信息学分析[J]. 东北农业大学学报, 2015, 46(9): 23-29. (Zhu Y M, Zhu Y, Duanmu H Z, et al. Bioinformatics analysis of GmUGD gene family in soybean genome[J]. Journal of Northeast Agricultural University, 2015, 46(9): 23-29.)[82]王爽, 徐华祥, 张加凡, 等. 大豆PLMT基因的克隆及在盐、碱胁迫下的表达分析[J]. 分子植物育种, 2018, 16(15): 4824-4828. (Wang S, Xu H X, Zhang J F, et al. Cloning of soybean PLMT gene and expression analysis of it under saline-alkaline stress[J]. Molecular Plant Breeding, 2018, 16(15): 4824-4828.)[83]成舒飞, 端木慧子, 陈超, 等. 大豆MYB转录因子的全基因组鉴定及生物信息学分析[J]. 大豆科学, 2016, 35(1): 52-57. (Cheng S F, Duanmu H Z, Chen C, et al. whole genome identification of soybean MYB transcription factors and bioinformatics analysis[J]. Soybean Science, 2016, 35(1): 52-57.)[84]吴冰, 李喜焕, 刘翠, 等. 大豆MYB转录因子GmPHR1转化及功能研究[J]. 大豆科学, 2013, 32(3): 302-305. (Wu B, Li X H, Liu C, et al. Genetic transformation and function analysis of transcription factor GmPHR1in soybean[J]. Soybean Science, 2013, 32(3): 302-305.)[85]朱延明, 杜建英, 陈超, 等. 碱胁迫应答基因GsSnRK1. 1与上游调控因子GsGRIK1互作功能分析[J]. 东北农业大学学报, 2018, 49(6): 1-11. (Zhu Y M, Du J Y, Chen C, et al. Analysis of interaction function of upstream regulator GsGRIK1and GsSnRK1. 1in response to alkaline stress[J]. Journal of Northeast Agricultural University, 2018, 49(6): 1-11.)[86]李慧卿, 陈超, 陈冉冉, 等. 利用CRISPR/Cas9双基因敲除系统初步解析大豆GmSnRK1. 1和GmSnRK1. 2对ABA及碱胁迫的响应[J]. 遗传, 2018, 40(6): 496-507. (Li H Q, Chen C, Chen R R, et al. Preliminary analysis of the role of GmSnRK1. 1and GmSnRK1. 2in the ABA and alkaline stress response of the soybean using the CRISPR/Cas9-based gene double-knockout system[J]. Hereditas, 2018, 40(6): 496-507.)[87]葛瑛, 朱延明, 吕德康, 等. 野生大豆碱胁迫反应的研究[J]. 草业科学, 2009, 26(2): 47-52. (Ge Y, Zhu Y M, Lyu D K, et al. Research on responses of wild soybean to alkaline stress[J]. Pratacultural Science, 2009, 26(2): 47-52.)[88]葛瑛. 野大豆碱胁迫转录谱与基因组整合分析[D]. 哈尔滨: 东北农业大学, 2010. (Ge Y. Integration of microarray and genome analusis in alialine-stressed Glycine soja[J]. Harbin: Northeast Agricultural University, 2010.)[89]徐靖宇. 盐胁迫下野大豆(Glycine soja)光合特性、离子动态平衡及其相关关系研究[D]. 长春: 东北师范大学, 2016. (Xu J Y. The photosynthetic characteristics, ion homeostasls and the correlation beween them in Glycine soja under salt stress[D]. Changchun: Northeast Normal University, 2016.)[90]牛陆. 盐、碱胁迫对大豆属植物的结构演化及生理特性的影响[D]. 长春: 东北师范大学, 2013. (Niu L. The responses of structural evolvement and physiological in Glycine under salt stress and alkali stress[D]. Changchun: Northeast Normal University, 2013.)[91]吉丽. 盐碱胁迫下大豆根际微生物多样性分析[D]. 长春: 吉林农业大学, 2017. (Ji L. Diversity analysis of rhizosphere microorganism in soybean under saline alkali stress[D]. Changchun: Jilin Agricultural University, 2017.)[92]田志喜, 刘宝辉, 杨艳萍, 等. 我国大豆分子设计育种成果与展望[J]. 中国科学院院刊, 2018, 33(9): 915-922. (Tian Z X, Liu B H, Yang Y P, et al. Update and perspect of soybean molecular module-based designer breeding in China[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(9): 915-922.)

Memo

Memo:
-
Last Update: 1900-01-01