|Table of Contents|

Studies on WRKY Transcription Factors and Their Biological Functions in Soybean(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2019年05期
Page:
813-820
Research Field:
Publishing date:

Info

Title:
Studies on WRKY Transcription Factors and Their Biological Functions in Soybean
Author(s):
(Institute of Cotton, Shanxi Academy of Agricultural Sciences, Yuncheng 044000, China)
Keywords:
Glycine max WRKY transcription factors Adverse stress Gene function
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2019.05.0813
Abstract:
WRKY transcription factors play a key role in resistance to adverse stresses and growth development of plants. Thus, studies on function of WRKY transcription factors have become a hotspot in the plant biology field. This paper elaborated the biological functions of soybean WRKY family transcription factors, meanwhile classified and analyzed the relevant response genes of soybean in various stress and growth development. These results will be helpful for the excavation and functional analysis of the soybean WRKY gene family and provide certain molecular basis for the subsequent genetic improvement. And it will be practical significant for us to study new anti-stress materials in new germplasm creating.

References:

[1]Wu W, Zhang Q, Zhu Y, et al. Comparative metabolic profiling reveals secondary metabolites correlated with soybean salt tolerance[J]. Journal of Agricultural and Food Chemistry, 2008, 56(23): 118-132.
[2]Jahan M A, Harris B, Lowery M, et al. The NAC family transcription factor GmNAC42-1 regulates biosynthesis of the anticancer and neuroprotective glyceollins in soybean[J]. BMC Genomics, 2019, 20: 149.
[3]孙明明, 王萍, 李智媛, 等. 大豆活性成分研究进展[J]. 大豆科学, 2018, 37(6): 975-983. (Sun M M, Wang P, Li Z Y, et al. Research progress of soybean active ingredients[J]. Soybean Science, 2018, 37(6): 975-983.)
[4]Crawford N M. Mechanisms for nitric oxide synthesis in plants[J]. Journal of Experimental Botany, 2006, 57(3): 471-478.
[5]Ishiguro S, Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′upstream regions of genes coding for sporamin and β-amylase from sweet potato[J]. Molecular Gene Genetic, 1994, 244(6): 563-571.
[6]李珍, 华秀婷, 张积森. 高等植物WRKY转录因子家族的演化及功能研究进展[J]. 热带作物学报, 2018, 39(2): 405-414. (Li Z, Hua X T, Zhang J S. Evolution and gene function of WRKY transcription factor families in higher plants[J]. Chinese Journal of Tropical Crops, 2018, 39(2): 405-414.)
[7]Banerjee A, Roychoudhury A. WRKY proteins: Signaling and regulation of expression during abiotic stress responses[J]. The Scientific World Journal, 2015: 807560.
[8]Duan Y, Jiang Y, Ye S, et al. PtrWRKY73, a salicylic acid-inducible poplar WRKY transcription factor, is involved in disease resistance in Arabidopsis thaliana[J]. Plant Cell Report, 2015, 34: 831-841.
[9]Zentella R, Zhang Z, Park M, et al. Global analysis of della direct targets in early gibberellin signaling in Arabidopsis[J]. Plant Cell, 2007, 19: 3037-3057.
[10]Silke R, Imre E S. Targets of AtWRKY6 regulation during plant senescence and pathogen defense[J]. Genes Development, 2002, 16: 1139-1149.
[11]孙淑豪,余迪求. WRKY转录因子家族调控植物逆境胁迫响应[J]. 生物技术通报, 2016, 32(10): 66-76. (Sun S H, Yu D Q. WRKY transcription factors in regulation of stress response in plant[J]. Biotechnology Bulletin, 2016, 32(10): 66-76.)
[12]Chen H, Lai Z B, Shi J W, et al. Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to absci-sic acid and abiotic stress[J]. BMC Plant Biology, 2010, 10(6): 443-462.
[13]Park C Y, Lee J H, Yoo J H, et al. WRKY group IId transcription factors interact with calmodulin[J]. FEBS Letters, 2005, 579(6):1545-50.
[14]Schmutz J, Cannon S B, Schlueter J, et al. Genome sequence of the palaeopolyploid soybean[J]. Nature, 2010,463(7278):178-183.
[15]李岢, 周春江. 植物WRKY转录因子的研究进展[J]. 植物生理学报, 2014, 50(9):1329-1335. (Li K, Zhou C J. Research progress in WRKY transcription factors in plants[J]. Plant Physiology Journal, 2014, 50(9): 1329-1335.)
[16]罗昌国, 袁启凤, 裴晓红, 等. 植物WRKY转录因子家族Group Ⅱa基因研究进展[J]. 热带作物学报, 2015, 36(3): 629-637. (Luo C G, Yuan Q F, Pei X H, et al. Research progress on WRKY transcription factors GroupⅡa gene in plants[J]. Chinese Journal of Tropical Crops, 2015, 36(3): 629-637.)
[17]禹阳, 贾赵东, 马佩勇, 等. WRKY转录因子在植物抗病反应中的功能研究进展[J]. 分子植物育种, 2018,16 (21): 7009-7020. (Yu Y, Jia Z D, Ma P Y, et al. Research progress on the role of WRKY transcription factors in plant defense[J]. Molecular Plant Breeding, 2018, 16(21):7009-7020.)
[18]Malato B M, Cabreira C, Strohm B W, et al. Genome-wide annotation of the soybean WRKY family and functional characterization of genes involved in response to Phakopsora pachyrhizi infection[J]. BMC Plant Biology, 2014, 14: 236.
[19]Fan S J, Dong L D, Han D, et al. GmWRKY31 and GmHDL56 enhances resistance to phytophthora sojae by regulating defense-related gene expression in soybean[J]. Frontiers in Plant Science, 2017, 68: 781.
[20]王莎莎, 崔晓霞, 黄颜众, 等. 大豆GmWRKY148的克隆与功能分析[J]. 中国农业科学, 2018, 51(18): 3445-3454. (Wang S S, Cui X X, Huang Y Z, et al. Cloning and functional analysis of the GmWRKY148 in soybean[J]. Scientia Agricultura Sinica, 2018, 51(18): 3445-3454.)
[21]Yang Y, Zhou Y, Chi Y J, et al. Characterization of soybean WRKY gene family and identifcation of soybean WRKY genes that promote resistance to soybean cyst nematode[J]. Scientific Reports, 2017,7:17804.
[22]Tripathi P, Rabara R C, Choudhary M K, et al. The interactome of soybean GmWRKY53 using yeast 2-hybrid library screening to saturation[J]. Plant Signal Behavior, 2015, 10(7):e1028705.
[23]Wei L, Wang W W, Yu Z Y, et al. Molecular genetic analysis on soybean cyst nematode resistance in Heilongjiang province, China[J]. Soybean Science, 2018, 37(6): 843-853.
[24]Aditya B, Aryadeep R. WRKY proteins: Signaling and regulation of expression during abiotic stress responses[J]. The Scientific World Journal, 2015: 807560.
[25]王昭玉, 甄 珍, 李雅琳, 等. 大豆转录因子GmWRKY4分子克隆与表达分析 [J]. 大豆科学, 2018, 37(4): 539-544. (Wang Z Y, Zhen Z, Li Y L, et al. Cloning and expression analysis of transcription factors GmWRKY4 in soybean[J]. Soybean Science, 2018, 37(4): 539-544.)
[26]柯丹霞, 彭昆鹏, 夏远君, 等. 盐胁迫应答基因GmWRKY6的克隆及转基因百脉根的抗盐分析[J]. 草业学报, 2018, 27(8):95-106. (Ke D X, Peng K P, Xia Y J, et al. Cloning of salt-stressed responsive gene GmWRKY6 and salt resistance analysis of transgenic Lotus japonicus[J]. Acta Prataculturae Sinica, 2018, 27(8): 95-106.)
[27]Shi W Y, Du Y T, Ma J, et al. The WRKY transcription factor GmWRKY12 confers drought and salt tolerance in soybean[J]. International Journal of Molecular Sciences, 2018, 19: 4087.
[28]Zhou Q Z, Tian A G, Zou H F, et al. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants[J]. Plant Biotechnology Journal, 2008, 6(5): 486-503.
[29]Yu Y C, Wang N, Hu R B, et al. Genome-wide identification of soybean WRKY transcription factors in response to salt stress[J]. Springer Plus, 2016, 5: 920.
[30]宁文峰, 庞 添, 杨艳玲, 等. 大豆GmWRKY20基因表达特性研究[J]. 大豆科学, 2016, 35(5): 748-753. (Ning W F, Pang T, Yang Y Y, et al. Expression analysis of GmWRKY20 in soybean[J]. Soybean Science, 2016, 35(5): 748-753.)
[31]王婷婷, 丛亚辉, 柳聚阁, 等. 大豆中一个WRKY28-like基因的克隆与功能分析[J]. 作物学报, 2016, 42(4): 469-481. (Wang T T, Cong Y H, Liu J G, et al. Cloning and functional analysis of a WRKY28-like gene in soybean[J]. Acta Agronomica Sinica, 2016, 42(4): 469-481.)
[32]Xu Z L, Raza Q, Xu L, et al. GmWRKY49, a salt-responsive nuclear protein, improved root length and governed better salinity tolerance in transgenic Arabidopsis[J]. Frontiers in Plant Science, 2018, 9: 809.
[33]Song H, Wang P F, Hou Lei, et al. Global analysis of WRKY genes and their response to dehydration and salt stress in soybean[J]. Frontiers in Plant Science, 2016, 7: 9.
[34]Wang F, Chen H W, Li Q T, et al. GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants[J]. The Plant Journal, 2015, 83(2): 224-236.
[35]李大红, 王春弘, 刘喜平, 等. 大豆GmWRKY35基因的克隆及其增强烟草耐旱能力研究[J]. 大豆科学, 2017, 36(5): 685-691. (Li D H, Wang C H, Liu X P, et al. Expression of GmWRKY35, a soybean WRKY gene, in transgenic tobacca confers drought stress tolerances[J]. Soybean Science, 2017, 36(5): 685-691.)
[36]张兰, 王晓萍, 毕影东, 等. 大豆转录因子GmWRKY57B的基因克隆及功能分析[J]. 科学通报, 2008, 53(21): 2604-2611. (Zhang L, Wang X P, Bi Y D, et al. Cloning and functional analysis of transcription factors GmWRKY57B in soybean[J]. Chinese Science Bulletin, 2008, 53(21): 2604-2611.)
[37]Zhu Y X, Gong H J. Beneficial effects of silicon on salt and drought tolerance in plants[J]. Agronomy for Sustainable Development, 2014, 34: 455-472.
[38]Yin J L, Jia J H, Lian Z Y, et al. Silicon enhances the salt tolerance of cucumber through increasing polyamine accumulation and decreasing oxidative damage[J]. Ecotoxicology and Environmental Safety, 2019, 169: 8-17.
[39]朱永兴, 李换丽, 胡彦宏, 等. 硅酸盐提高番茄抗盐性的效应与生理机制[J]. 农业环境科学学报, 2015, 34(2):213-220.(Zhu Y X, Li H L, Hu Y H, et al. Effect of silicate on salt resistance in tomato and underlying physiological mechanisms[J]. Journal of Agro-Environment Science, 2015, 34(2):213-220.)
[40]Zhu Y X, Yin J L, Liang Y F, et al. Transcriptomic dynamics provide an insight into the mechanism for silicon-mediated alleviation of salt stress in cucumber plants[J]. Ecotoxicology and Environmental Safety, 2019, 174:245-254.
[41]Li H L, Zhu Y X, Hu Y H, et al. Beneficial effects of silicon in alleviating salinity stress of tomato seedlings grown under sand culture[J]. Acta Physiol Plant, 2015, 37:71.
[42]Zhang Y, Shou L, Ying L, et al. Effects of exogenous spermidine and elevated CO2 on physiological and biochemical changes in tomato plants under iso-osmotic salt stress[J]. Journal of Plant Growth Regulation, 2018, 37:1222-1234.
[43]Zhang Y, Shi Y, Gong H J, et al. Beneficial effects of silicon on photosynthesis of tomato seedlings under water stress[J]. Journal of Integrative Agriculture, 2018, 17(10): 2151-2159.
[44]Gong H J, Zhu X Y, Chen K M, et al. Silicon alleviates oxidative damage of wheat plants in pots under drought[J]. Plant Science, 2005, 169: 313-321.
[45]魏晓爱, 姚文静, 姜廷波等. 拟南芥WRKY基因家族应答非生物胁迫基因的鉴定[J]. 东北林业大学学报, 2016, 44(10): 45-48. (Wei X A, Yao W J, Jiang T B, et al. Identification of WRKY gene in response to abiotic stress from WRKY transcirption factor gene family of Arabidopsis thaliana[J]. Journal of Northeast Forestry University, 2016, 44(10): 45-48.)
[46]Wu J, Chen J B, Wang L F, et al. Genome-wide investigation of WRKY transcription factors involved in terminal drought stress response in common bean[J]. Frontiers in Plant Science, 2017, 8: 380
[47]Lai Z B, Vinod K M, Zheng Z Y, et al. Roles of Arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens[J]. BMC Plant Biology, 2008, 8: 68.
[48]Luo X, Bai X, Sun X L, et al. Expression of wild soybean WRKY20 in Arabidopsis enhances drought tolerance and regulates ABA signalling[J]. Journal of Experimental Botany, 2013, 8 (64): 2155-2169.
[49]Chen W, Yan Q M, Patil G B, et al. Identification and comparative analysis of differential gene expression in soybean leaf tissue under drought and flooding stress renealed by RNA-Seq[J]. Frontiers in Plant Science, 2016, 7: 1044.
[50]包刚, 覃志豪, 周义, 等. 气候变化对中国农业生产影响的模拟评价进展[J]. 中国农学通报, 2012, 28(2): 303-307. (Bao G, Qin Z H, Zhou Y, et al. Advance of evaluation of climate impact on crop yield[J]. Chinese Agriculture Science Bulletin, 2012, 28(2): 303-307. )
[51]靳路真, 王 洋, 张 伟, 等. 高温胁迫对不同耐性大豆品种生理生化的影响[J]. 大豆科学, 2019, 38(1): 63-71. (Jin L Z, Wang Y, Zhang W, et al. Effects of high temperature stress on physiological and biochemical traits of soybeans with different heat tolerance[J]. Soybean Science, 2019, 38(1): 63-71.)
[52]桑树鹏. 大豆不同生育期内应对低温冷害措施的研究[J]. 大豆科技, 2013(1): 53-54. (Sang S P. Study on the measures of coping with low temperature and cold damage in different growth stages of soybean[J]. Soybean Technology, 2013(1):53-54.)
[53]谢政文, 王连军, 陈锦洋, 等. 植物WRKY转录因子及其生物学功能研究进展[J]. 中国农业科技导报, 2016, 18(3): 46-54. (Xie Z W, Wang L J, Chen J Y, et al. Studies on WRKY transcription factors and their biological functions in plants[J]. Journal of Agricultural Science Technology, 2016, 18(3): 46-54.)
[54]李振华, 王建华. 种子活力与萌发的生理与分子机制研究进展[J]. 中国农业科学, 2015, 48(4): 646-660. (Li Z H, Wang J H. Advances in research of physiological and molecular mechanism in seed vigor and germination[J]. Scientia Agricultura Sinica, 2015, 48(4): 646-660.)
[55]Jiang W, Yu D. Arabidopsis WRKY2 transcription factor mediates seed germination and postgermination arrest of development by abscisic acid[J]. BMC Plant Biology, 2009, 9: 96.
[56]Robatzek S, Somssich I E. Targets of AtWRKY6 regulation during plant senescence and pathogen defence[J]. Genes and Development, 2002,16(9): 1139-1149.
[57]Yu Y, Liu Z, Wang L, et al. WRKY71 accelerates flowering via the direct activation of FLOWERING LOCUS T and LEAFY in Arabidopsis thaliana[J]. The Plant Journal, 2016, 85(1):96-106.
[58]Zhang C Q, Xu Y, Lu Y, et al. The WRKY transcription factor OsWRKY78 regulates stem elongtion and seed development in rice[J]. Planta, 2011, 234(3): 541-554.
[59]Han M, Kim C Y, Lee J, et al. OsWRKY42 represses OsMTid and induces reactive oxygen species and leaf senescene in rice[J]. Molecules and Cells, 2014, 37(7): 532-539.
[60]Gu Y Z, Li W, Jiang H W, et al. Differential expression of a WRKY gene between wild and cultivated soybeans correlates to seed size [J]. Journal of Experimental Botany, 2017, 68(11): 2717-2729.
[61]Yang Y, Chi Y J, Wang Z, et al. Functional analysis of structurally related soybean GmWRKY58 and GmWRKY76 in plant growth and development[J]. Journal of Experimental Botany, 2016, 67(15): 4727-4742.
[62]Vanderauwera S, Vandenbroucke K, Inzé A, et al. AtWRKY15 perturbation abolishes the mitochondrial stress response that steers osmotic stress tolerance in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 2012,109(49): 20113-20118.
[63]Yu F, Huaxia Y, Lu W, et al. GhWRKY15, a member of the WRKY transcription factor family identified from cotton (Gossypium hirsutum L.), is involved in disease resistance and plant development[J]. BMC Plant Biology, 2012, 12: 144.
[64]Chen L, Song Y, Li S, et al. The role of WRKY transcription factors in plant abiotic stresses[J]. Biochimica et Biophysica Acta-Gene Regulatory Mechanisms, 2012, 1819(2): 120-128.
[65]Jiang Y, Liang G, Yang S, et al. Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid-and auxin-mediated signaling in jasmonic acid-induced leaf senescence[J]. Plant Cell, 2014, 26: 230-245.
[66]Dong J, Chen C, Chen Z. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response[J]. Plant Molecular Biology, 2003, 51: 21-37.
[67]Shang Y, Yan L, Liu Z Q, et al. The Mg-chelatase H subunit of arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition[J]. Plant Cell, 2010, 22:1909-1935.
[68]Zhang Y, Yu H, Yang X, et al. CsWRKY46, a WRKY transcription factor from cucumber, confers cold resistance in transgenicplant by regulating a set of cold-stress responsive genes in an ABA dependent manner[J]. Plant Physiology Biochemistry, 2016, 108:478-487.
[69]Mahajan S, Tuteja N. Cold, salinity and drought stresses: An overview[J]. Archives of Biochemistry and Biophysics, 2005, 444(2): 139-158.
[70]秦耀旭, 张关元, 刘司奇, 等. 植物重金属胁迫相关miRNA的研究进展[J]. 分子植物育种, 2019, 17(9):2855-2861.(Qin Y X, Zhang G Y, Liu S Q, et al. Research progress of miRNA related to heavy metal stress in plants[J]. Molecular Plant Breeding, 2019, 17(9): 2855-2861.)
[71]彭俊楚. 大豆GmWRKYs基因的克隆和功能研究[D]. 广州: 华南农业大学, 2016: 32-36. (Peng J C. Isolation and function analysis of soybean GmWRKYs[D]. Guangzhou: South China Agricultural University, 2016: 32-36.)
[72]Wang H, Hao J, Chen X, et al. Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants[J]. Plant Molecular Biology, 2007, 65(6): 799-815.
[73]张凡, 尹俊龙, 郭瑛琪, 等. WRKY转录因子的研究进展[J]. 生物技术通报, 2018, 34(1): 40-48. (Zhang F, Yin J L, Guo Y Q, et al. Research advances on WRKY transcription factors[J]. Biotechnology Bulletin, 2018, 34(1): 40-48.)
[74]李艳超, 赵青松, 王凤敏, 等. 大豆遗传转化技术研究进展[J]. 大豆科学, 2015, 34(1): 155-162. (Li Y C, Zhao Q S, Wang F M, et al. Research progress on soybean genetic transformation technology[J]. Soybean Science, 2015, 34(1): 155-162.)

Memo

Memo:
-
Last Update: 2019-09-20