|Table of Contents|

Purification, Characterization of a Trypsin Inhibitor from Black Soybean [Glycine max(L.) merr.] and Effect of High Temperature on Its Digestion(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2019年04期
Page:
597-606
Research Field:
Publishing date:

Info

Title:
Purification, Characterization of a Trypsin Inhibitor from Black Soybean [Glycine max(L.) merr.] and Effect of High Temperature on Its Digestion
Author(s):
SU Zi-jian1 SUN Le-chang12 YAN Long-jie1 ZHANG Ling-jing12 LIU Guang-ming12 CAO Min-jie12
(1.College of Food and Biological Engineering,Jimei University,Xiamen 361021, China; 2.National & Local Joint Engineering Research Center of Processing Technology for Aquatic Products, Xiamen 361021, China)
Keywords:
Purification Black soybean Trypsin inhibitor Inhibition Digestion
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2019.04.0597
Abstract:
Trypsin inhibitor (TI) has significant research value in food science and biotechnology. In order to investigate the properties of black soybean trypsin inhibitor (BSTI) and the digestive properties of gastrointestinal fluids, BSTI was purified from black soybeans by degreasing, heat treatment, ammonium sulfate salting out and anion column chromatography. SDS-PAGE showed a single band of BSTI with a relative molecular mass of approximately 21 kDa. BSTI was stable below 60℃ and in the range of pH2-11. When the molar ratio of BSTI to trypsin reached 1, the activity of trypsin was suppressed to 15% or less. Inhibition kinetics indicated that the inhibition of trypsin by BSTI was non-competitive type, and its inhibition constantKi=0.24 nmol?L-1. The results of circular dichroism analysis showed that the secondary structure of BSTI at room temperature wasβ-sheet 43.4%, random coil 29.0%,β-turn 21.2%,α-helix 8.1% and its denaturation temperature was 61±0.9℃. BSTI was resistant to simulated gastrointestinal fluid digestion. However, after heat treatment at 121℃ for 30 min, the anti-enzymatic action of BSTI was significantly reduced, and was easily hydrolyzed by major digestive enzymes such as pepsin, trypsin and chymotrypsin.

References:

[1]Kobayashi H. Prevention of cancer and inflammation by soybean protease inhibitors[J]. Frontiers in Bioscience, 2013, 5: 966-973.

[2]Rebecca C, Alexander V K, Jane F, et al. An unusual helix-turn-helix protease inhibitory motif in a novel trypsin inhibitor from seeds of veronica (Veronica hederifoliaL. ) [J]. Journal of Biological Chemistry, 2007, 282(38): 27760-27768.
[3]Ma T C, Guo L, Zhou R H, et al. Soybean-derived Bowman-Birk inhibitor (BBI) blocks HIV entry into macrophages[J]. Virology, 2018, 513: 91-97.
[4]Lanza A, Tava A, Catalano M, et al. Effects of theMedicago scutellatatrypsin inhibitor(MsTI) on cisplatin-induced cytotoxicity in human breast and cervical cancer cells[J]. Anticancer Research: International Journal of Cancer Research and Treatment, 2004, 24(1): 227-233.
[5]Li J G, Xiang Q S, Liu X F, et al. Inactivation of soybean trypsin inhibitor by dielectric-barrier discharge(DBD) plasma[J]. Food Chemistry, 2017, 232: 515-522.
[6]江连洲, 李佳妮, 邹晓霜, 等. 花青素对大豆蛋白体外胃消化结构的影响[J]. 食品科学, 2018, 39(20): 34-42. (Jiang L Z, Li J N, Zou X S, et al. Effects of anthocyanin onin vitrodigestibility of soy protein isolate[J]. Food Science, 2018, 39(20): 34-42. )
[7]俞红恩, 康玉凡. 豆类胰蛋白酶抑制剂研究进展[J]. 食品工业, 2017, 38(4): 265-269. (Yu H E, Kang Y F. Research progress in legume trypsin inhibitor[J]. Food Industry, 2017, 38(4): 265-269. )
[8]王荣春, 孙建华, 何述栋, 等. 胰蛋白酶抑制剂的结构与功能研究进展[J]. 食品科学, 2013, 34(9): 364-368. (Wang R C, Sun J H, He S D, et al. Recent advance in research on the structure and function of trypsin inhibitor[J]. Food Science, 2013, 34(9): 364-368. )
[9]俞红恩, 康玉凡. 豆类胰蛋白酶抑制剂亚基特性研究[J]. 食品工业科技, 2017, 38(9): 133-138. (Yu H E, kang Y F. Subunit properties of legume trypsin inhibitor[J]. Science and Technology of Food Industry, 2017, 38(9): 133-138. )
[10]Astwood J D, Leach J N, Fuchs R L. Stability of food allergens to digestionin vitro[J]. Nature Biotechnology, 1996, 14: 1269-1273.
[11]Roychaudhuri R, Sarath G, Zeece M, et al. Stability of the allergenic soybean Kunitz trypsin inhibitor[J]. Biochimica et Biophysica Acta: Proteins and Proteomics, 2004, 1699(1-2): 207-212.
[12]秦琦, 张英蕾, 张守文. 黑豆的营养保健价值及研究进展[J]. 中国食品添加剂, 2015(7): 145-150. (Qin Q, Zhang Y L, Zhang S W. The nutritional value and research progress of black soybean[J]. China Food Additives, 2015(7): 145-150.)
[13]张瑞芬, 池建伟, 丘银清, 等. 黑大豆的营养及保健功能研究进展[J]. 广东农业科学, 2006(11): 13-16. (Zhang R F, Chi J W, Qiu Y Q, et al. Research progress of the nutrition and health-promoting functions of black soybean[J]. Guangdong Agricultural Science, 2006(11): 13-16. )
[14]Lowry O H, Rosebrough N J, Farr A J. Protein measurement with the folinphenol reagent[J]. Journal of Biological Chemistry, 1951, 193: 265-275.
[15]Shen J D, Cai Q F, Liu G M, et al. A comparison study of the impact of boiling and high pressure steaming on the stability of soybean trypsin inhibitor[J]. International Journal of Food Science and Technology, 2013, 48: 1877-1883.
[16]United States Pharmacopeial Convention, Committee of Revison. The United States Pharmacopeia USP23: The national formulari NF 18; national formulary supplements 1-9[M]. Netherlands: Springer, 1987.
[17]万楚君, 游银川, 翁凌, 等. 四种加工方式对皱纹盘鲍制品消化特性的影响[J]. 水产学报, 2017, 41(6): 928-935. (Wan C J, You Y C, Weng L, et al. Comparison of the digestibility of abalone (Haliotis discus hannai) produced by four different processing treatments[J]. Journal of Fisheries of China, 2017, 41(6): 928-935. )
[18]宋欣欣, 段小娟, 徐颖, 等. 豆类种籽中胰蛋白酶抑制剂研究进展[J]. 粮食与油脂, 2016, 29(6): 1-4.(Song X X, Duan X J, Xu Y, et al. Research progress of trypsin inhibitors of legume seeds[J]. Cereals & Oils, 2016, 29(6): 1-4.)
[19]Jiang T L, Cai Q F, Shen J D, et al. Establishment of immunological methods for the detection of soybean proteins in surimi products [J]. LWT-Food Science and Technology, 2015, 64: 344-349.
[20]Romero M P, Brandao C, Vivianne F A, et al. CgTI, a novel thermostable Kunitz trypsin-inhibitor purified fromCassia grandisseeds: Purification, characterization and termiticidal activity[J]. International Journal of Biological Macromolecules, 2018(118):2296-2306.
[21]Jiang X J, Zhang Z J, Cai H N, et al. The effect of soybean trypsin inhibitor on the degradation of myofibrillar proteins by an endogenous serine proteinase of crucian carp[J]. Food Chemistry, 2006, 94: 498-503.
[22]程芬芬, 刘春, 杨晓泉. 大豆胰蛋白酶抑制剂的制备及性质[J]. 食品科学, 2017, 38(3): 37-44. (Cheng F F, Liu C, Yang X Q. Preparation and properties of soybean trypsin inhibitor[J].Food Science, 2017, 38(3): 37-44. )
[23]Klomklao S, Benjakul S, Kishimura H, et al. A heat-stable trypsin inhibitor in adzuki bean (Vigna angularis): Effect of extraction media, purification and biochemical characteristics[J]. International Journal of Food Science and Technology, 2010, 45: 163-169.
[24]David U, Kathrin O, Kristin A, et al. Basic residues ofβ-sheet a contribute to heparin binding and activation of vaspin(Serpin A12)[J]. Journal of Biological Chemistry, 2016, 292(3): 994-1004.
[25]赵伟伟. 黑豆胰蛋白酶抑制剂的分离纯化及活性鉴定[D]. 太原: 山西大学, 2016. (Zhao W W. Purification and bioactivities of trypsin inhibitor from black soybean[D]. Taiyuan: Shanxi University, 2016.)
[26]罗玉娇, 李滨, 舒衡平, 等. Kunitz型胰蛋白酶抑制剂的研究进展[J]. 中国生化药物杂志, 2012, (3)3: 316-318. (Luo Y J, Li B, Shu H P, et al. Research advances in Kunitz trypsin inhibitor[J]. Chinese Journal of Biochemical Pharmaceutics, 2012, (3)3: 316-318.)
[27]Guerra Y, Valiente P A, Pons T, et al. Structures of a bi-functional Kunitz-type STI family inhibitor of serine and aspartic protease: Could the aspartic protease inhibition have evolved from canonical serine protease-binding loop?[J]. Journal of Structural Biology, 2016, 195: 259-271.
[28]袁燕, 梅双喜. 蒜头果蛋白的红外光谱及圆二色谱分析[J]. 安徽农业科学, 2016, 44(33): 116-117. (Yuan Y, Mei S X. Infrared spectroscopy and circular dichroism spectrum ofMalanin[J]. Journal of Anhui Agricultural Sciences, 2016, 44(33): 116-117.)
[29]Peng L, Tzi B N. A stable trypsin inhibitor from Chinese dull black soybeans with potentially exploitable activities[J]. Process Biochemistry, 2008, 43: 992-998.
[30]Cui Y, Hu Y H, Yu F, et al. Inhibition kinetics and molecular simulation of p-substituted cinnamic acid derivatives on tyrosinase[J]. International Journal of Biological Macromolecules, 2016, 95: 1289-1297.
[31]杭虞杰, 李学英, 杨宪时, 等. 大豆胰蛋白酶抑制剂对南极磷虾类胰蛋白酶的抑制动力学[J]. 中国水产科学, 2012, 19(4): 635-640. (Hang Y J, Li X Y, Yang X S, et al. Kinetics of inhibition of trypsin-like enzyme fromEuphausia superbaby STI[J]. Journal of Fishery of Sciences of China, 2012, 19(4): 635-640.)
[32]Ludovico M, Adeliana S d O, Elizeu A S, et al. Structural and mechanistic insights into a novel non-competitive Kunitz trypsin inhibitor fromAdenanthera pavoninaL. seeds with double activity toward serine- and cysteine-proteinases[J]. Journal of Molecular Graphics and Modelling, 2010, 29: 148-156.
[33]Guo J X, Peter T E, Alun R C, et al. Structure of Kunitz-type potato cathepsin D inhibitor[J]. Journal of Structural Biology, 2015, 192: 554-560.
[34]Bajpai S, Sharma A, Gupta M N. Removal and recovery of antinutritional factors from soybean flour[J]. Food Chemistry, 2005, 89(4): 497-501.
[35]Yu H L, Cao M J, Cai Q F, et al. Effects of different processing methods on digestibility ofScylla paramamosainallergen (tropomyosin)[J]. Food & Chemical Toxicology, 2011, 49(4): 791-798.

Memo

Memo:
-
Last Update: 2019-07-25