|Table of Contents|

Sequencing Analysis of Transcriptome During the Different Developmental Stages in Soybean Seed(PDF)

《大豆科学》[ISSN:1000-9841/CN:23-1227/S]

Issue:
2019年04期
Page:
533-541
Research Field:
Publishing date:

Info

Title:
Sequencing Analysis of Transcriptome During the Different Developmental Stages in Soybean Seed
Author(s):
CHEN Jin-ling XU Yuan CHEN Yu-mei LI Lu-lu LI Hui-min QIN Xin-min
(College of Life Science, Guangxi Normal University, Guilin 541004,China)
Keywords:
Soybean Differential expressed genes Lipid synthesis Transcriptome sequencing
PACS:
-
DOI:
10.11861/j.issn.1000-9841.2019.04.0533
Abstract:
In order to study the mechanism of oil synthesis and accumulation in soybean seeds at different developmental stages at the molecular level, the soybean seeds of 20 d (DD_20), 30 d (DD_30), 40 d (DD_40) and 50 d (DD_50) were used as test materials in transcriptome sequencing. Through the analysis of transcriptome sequencing data, 461 566 988 raw reads were obtained. After filtration, the clean reads of DD_20, DD_30, DD_40 and DD_50 were obtained respectively, as 107 548 920, 111 670 776, 109 339 672 and 108 884 270. The total differential expression genes of DD_20/DD_30, DD_30/DD_40, DD_40/DD_50 were 4 759, 6 245 and 13 763 respectively, of which up-regulated genes were 1 801, 2 941 and 5 695 respectively. KEGG pathway analysis of differential expression genes obtained 134, 133 and 136 KEGG pathways, screened 8 differential expression genes related to lipid synthesis, as ACC, FATB, GPAT, DGAT1, G3PDH, KASI, SAD and FAD2. The results provide an important reference for further study on the regulation mechanism of soybean seed lipid synthesis, as well as for the breeding of high oil content soybean varieties.

References:

[1]吕慧颖, 王道文, 葛毅强, 等. 大豆育种行业创新动态[J]. 植物遗传资源学报, 2018, 19(3): 464-467. (Lyu H Y, Wang D W, Ge Y Q, et al. Innovation of soybean breeding industry[J]. Journal of Plant Genetic Resources, 2018, 19(3): 464-467.)

[2]黄初女, 金东淳, 董艺兰, 等. 浅谈大豆蛋白质品质改良[J]. 吉林农业科学, 2006, 31(1): 37-40. (Huang C N, Jin D C, Dong Y L, et al. Talking about the improvement of soybean protein quality[J]. Journal of Jilin Agricultural Sciences, 2006, 31(1): 37-40.)
[3]冯丽娟. 不同基因型与环境因素对高油大豆品质性状的影响[D]. 大庆: 黑龙江八一农垦大学, 2007. (Feng L J. The effect of different genotypes and environmental factors on characters of high-oil soybean[D]. Daqing: Heilongjiang Bayi Agricultural University, 2007.)
[4]王金龙, 陈存来. 大豆种子贮藏蛋白组份11S/7S研究概况[J]. 山东农业科学, 1998(1): 48-50. (Wang J L, Chen C L. Study on seed storage protein component 11S/7S of soybean[J]. Shandong Agricultural Sciences, 1998(1): 48-50.)
[5]Wang J, Liu L, Guo Y, et al. A dominant locus, qBSC-1, controlsβsubunit content of seed storage protein in soybean [Glycine max(L.) Merri.][J]. Journal of Integrative Agriculture, 2014, 13(9): 1854-1864.
[6]Kaul S, Koo H L, Jenkins J, et al. Analysis of the genome sequence of the flowering plantArabidopsis thaliana[J]. Nature, 2000, 408(6814): 796-815.
[7]Feng Q, Zhang Y, Hao P, et al. Sequence and analysis of rice chromosome 4[J]. Nature, 2002, 420(6913): 316-320.
[8]Wang K, Wang Z, Li F, et al. The draft genome of a diploid cottonGossypium raimondii[J]. Nature Genetics, 2012, 44(10): 1098-1103.
[9]Zhang H, Miao H, Wang L, et al. Genome sequencing of the important oil-seed cropSesamum indicumL[J]. Genome Biology, 2013, 14(1): 401.
[10]Li P, Ponnala L, Gandotra N, et al. The developmental dynamics of the maize leaf transcriptome[J]. Nature Genetics, 2010, 42(12): 1060-1067.
[11]He W, Xu X, Liu X , et al. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection[J]. Nature Genetics, 2010, 42(12): 1053-1059.
[12]刘佳伟, 姚丹, 赵东海, 等. 大豆转录组测序研究进展综述[J]. 安徽农学通报, 2015, 21(8): 17-20. (Liu J W, Yao D, Zhao D H, et al. Research status of soybean transcriptome sequencing[J]. Anhui Agricultural Science Bulletin, 2015, 21(8): 17-20.)
[13]Ke T, Dong C, Mao H, et al. Analysis of expression sequence tags from a full-length-enriched cDNA library of developing sesame seeds (Sesamum indicum)[J]. BMC Plant Biology, 2011, 11(1): 180-191.
[14]Schmutz J, Cannon S B, Schlueter J, et al. Genome sequence of the palaeopolyploid soybean[J]. Nature, 2010, 463(7278): 178-183.
[15]陆亮, 贺建波, 苗龙, 等. 大豆GmDGK7和GmTPR基因与油脂相关性状的关联分析[J]. 大豆科学, 2015, 34(6): 938-944. (Lu L, He J B, Miao L, et al. Association of GmDGK7 andGmTPRgenes with oil related traits in soybean[J]. Soybean Science, 2015, 34(6): 938-944.)
[16]李玉兰, 孙勤富, 王幼平. 植物油脂合成的转录调控研究进展[J]. 分子植物育种, 2016, 14(9): 279-288. (Li Y L, Sun Q F, Wang Y P. Research advance in transcriptional regulation of lipid synthesis and accumulation in plant[J]. Molecular Plant Breeding, 2016, 14(9): 279-288.)
[17]吕晓杰, 潘德灼, 李健, 等. 油茶种仁成熟过程油脂合成代谢的转录组分析[J]. 森林与环境学报, 2018, 38(2): 156-163. (Lyu X J, Pan D Z, Li J, et al. Transcriptomic analysis of lipid synthesis metabolism inCamellia oleiferaseed kernel during its maturation period[J]. Journal of Forest and Environment, 2018, 38(2): 156-163.)
[18]Wang G, Li D, Miao Z, et al. Comparative transcriptome analysis reveals multiple functions for Mhy1p in lipid biosynthesis in the oleaginous yeastYarrowia lipolytica[J]. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2018, 1863(1):81-90.
[19]Fehr W R, Caviness C E. Stages of soybean development[R]// Special Report 80. Ames: Cooperative Extension Service, Agriculture and Home Economic Experiment Station, Iowa State University, 1977: 1-11.
[20]Roberts A, Pimentel H, Trapnell C, et al. Identification of novel transcripts in annotated genomes using RNA-Seq[J]. Bioinformatics, 2011, 27(17): 2325-2329.
[21]Mortazavi A, Williams B A, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nature Methods, 2008, 5(7): 621-628.
[22]Audic S, Claverie J M. The significance of digital gene expression profiles[J]. Genome Research, 1997, 7(10): 986-995.
[23]Brownsey R W, Zhande R, Boone A N. Isoforms of acetyl-CoA carboxylase: Structures, regulatory properties and metabolic functions[J]. Biochemical Society Transactions, 1997, 25(4): 1232-1238.
[24]Ke J, Wen T N, Nikolau B J, et al. Coordinate regulation of the nuclear and plastidic genes coding for the subunits of the heteromeric acetyl-coenzyme A carboxylase1[J]. Plant Physiology, 2000, 122(4): 1057-1071.
[25]Vigeolas H, Waldeck P, Zank T, et al. Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter[J]. Plant Biotechnology Journal, 2010, 5(3): 431-441.
[26]赵彦朋, 梁伟, 王丹, 等. 植物油脂合成调控与遗传改良研究进展[J]. 中国农业科技导报, 2018, 20(1): 14-24. (Zhao Y P, Liang W, Wang D, et al.Regulation of oil biosynthesis and genetic improvement in plant: Advances and prospects[J]. Journal of Agricultural Science and Technology, 2018, 20(1): 14-24.)
[27]Drmann P, Voelker T A, Ohlrogge J B. Accumulation of palmitate inArabidopsismediated by the acyl-acyl carrier protein thioesterase FATB1[J]. Plant Physiology, 2000, 123(2): 637-644.
[28]赵江哲. 大豆磷脂酶基因GmPLD和脂合成酶基因GmDGAT,GmLPAT在调控拟南芥生长和种子油含量中的作用[D]. 南京: 南京农业大学, 2013. (Zhao J Z. PhospholipaseGMPLDand lipid synthetaseGMDGATandGMLPATfrom soybean regulate growth and seed oil in transgenicArabidopsisplants[D]. Nanjing: Nanjing Agricultural University, 2013.)
[29]Focks N, Benning C. Wrinkled1: A novel, low-seed-oil mutant ofArabidopsiswith a deficiency in the seed-specific regulation of carbohydrate metabolism[J]. Plant Physiology, 1998, 118(1): 91-101.
[30]刘正杰, 张园, 王玉美, 等. 陆地棉GhDGAT1基因干涉载体构建与遗传转化[J]. 中国农业大学学报, 2013, 18(5): 1-8. (Liu Z J, Zhang Y, Wang Y M, et al. Construction and transformation of RNAi vector of gene GhDGAT1 in upland cotton[J]. Journal of China Agricultural University, 2013, 18(5): 1-8.)
[31]周丹, 赵江哲, 柏杨, 等. 植物油脂合成代谢及调控的研究进展[J]. 南京农业大学学报, 2012, 35(5): 77-86. ( Zhou D, Zhao J Z, Bai Y, et al. Research advance in triacylglycerol synthesis, metabolism, and regulation in plants[J]. Journal of Nanjing Agricultural University, 2012, 35(5): 77-86.)

Memo

Memo:
-
Last Update: 2019-07-25